

Central Yavapai Metropolitan Planning Organization

0 Regional Transportation Plan Update 2040

Appendices
 April 2015

Prepared by:

AECOM

In association with: Hexagon Transportation Consultants, Inc.

Central Creative

AECOM

Regional Iransportation Plan Update 2040

Public Meeting

April 23, 2014

Agenda

- Key Study M embers
- M eeting Purpose
- History and Background
- Schedule and Process
- Study Area
- Existing and Projected Socioeconomics
- Existing and Projected Traffic Volumes
- Next Steps

Key Study Members

- CYM PO
- Arizona Department of Transportation
- City of Prescott
- Town of Prescott Valley
- Town of Chino Valley
- Town of Dewey-Humboldt
- Yavapai County

Meeting Purpose

- Educate the community on the study and its process
- Present existing and projected population, employment, and traffic data
- Solicit input to identify areas where transportation improvements are needed

History and Background

What is CYM PO?

- Central Yavapai M etropolitan Planning Organization
- Partnership between ADOT, Chino Valley, Dewey-Humboldt, Prescott, Prescott Valley, and Yavapai County
- Responsible for planning the transportation system for the Central Yavapai region (encompasses about 400 square miles)
What is a Regional Transportation Plan (RTP)?
- A long-range (25-year) vision for the regional transportation system

History and Background

Why update the plan?

- Legislation requires updates to RTPs every five-years
- Economic recession has caused dramatic changes in expected population growth

Purpose of This Update

- Adjust traffic projections to more accurately reflect population and employment growth
- Extend the life of the existing roadway network by identifying high impact / low cost improvements
- Recommend future improvement projects and identify funding opportunities

Schedule and Process

Study Area

Existing and Forecasted Population

Existing Population

Forecasted Population (2040)

Existing and Forecasted Employment

Existing Employment

Forecasted Employment (2040)

Existing and Forecasted Traffic Volumes

Existing Traffic Volumes

Forecasted Traffic Volumes (2040)

Next Steps

- Incorporate input from public meetings and analyze future transportation condition (2040) traffic model to identify outstanding future transportation needs
- Develop and analyze regional transportation network alternatives
- Identify short-term improvements to extend the life of existing transportation networks
- Bring transportation network recommendations back to the public for review and comment (September)

Question and Answer

Overview

The Central Yavapai Metropolitan Planning Organization (CYMPO) encouraged communities within its planning boundaries to participate in public meetings scheduled for Wednesday, April 23 between 1 p.m. and 3 p.m. and 5:30 p.m. and 7:30 p.m. and provide input on the existing transportation needs and areas where the study should focus. Both meetings were held in the Town of Prescott Valley Library Auditorium.

A brief presentation was made by Kate Bondy, Project Manager with AECOM, followed by a brief question and answer session. In total 39 people attended from the communities as well as elected officials and local government representatives. All comment forms can be found in Appendix A: Comment Forms and copies of the sign in sheets can be found in Appendix B: Sign In Sheets.

The following summarizes the discussion at both of the public meetings.

Questions and Answers:
Q: What is the base for the projected population numbers? How is that forecasted?
A: CYMPO uses the data from the existing Arizona Department of Transportation (ADOT) model, which uses numbers based on the forecasted numbers produced by the Arizona Department of Administration. The numbers provided from the state agencies were reviewed and compared to those that the local governments used in their general plans.

Q: What will happen with the declining water resources in the area? How is it possible to continue to develop infrastructure for growing populations when there will be no water in the future?
A: This is a transportation planning study. The water component is analyzed in the local government plans and is inherently part of the transportation planning element. All population and employment forecasts take into account water resources.

Q: What kind of short-term improvements will be considered in this study?
A: This study will consider improvement to help the flow of traffic such as additional turn lanes and signal timing.

Q: Who is responsible for improving pavement quality?
A: The preservation of roadways is the responsibility of ADOT, Yavapai County, and local jurisdictions.

Q: Where in the plan is bus rapid transit and pedestrian and bicycle pathways considered?
A: The plan will include a multimodal element. This will be developed later in the study.

Verbal Comments:

- More wildlife corridors need to be implemented. Fewer vehicle collisions with wildlife would save the governments hundreds of thousands of dollars.
- The biggest economic draw in this area is historical sites. There should be a greater emphasis on trying to increase tourism in the area.
- European and Canadian studies should be researched and the findings should be applied to this study.

Written Comments Received on Comment Forms

1. On which roads do you currently experience the most traffic delays?

- SR 69 - Montezuma Downtown Prescott
- SR 89 - South of Prescott
- \quad SR 89 - Chino to SR 89A
- SR 69 - SR 89 to SR 169
- SR 89A - Granite Dells Parkway to Viewpoint Drive
- Glassoford Hills Road
- Willow Creek Road - SR 89 to Iron Springs
- Sheldon Street
- Gurley Street
- SR 69 and Glassford Hills Road
- SR 89 between Prescott and Chino Valley
- SR 89 between Chino Valley and Prescott
- None, with the exception of continued construction projects, which are making us like Phoenix and S. Cal where everything is constantly torn up. If I must drive, I do it before or after peak hours.
- I do not drive but it would be nice to synchronize the traffic lights on Robert Rd and a few other PV streets.

2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (2040)?

- SR 69/SR 89 - Sheldon, Gurley, and Montezuma
- Willow Creek Road - Grove Miller Valley
- SR 89A - SR 89 to Robert Road
- SR 69 - SR 89 to SR 169
- SR 169 - SR 69 to Old Cherry Road
- SR 89 - Deep Well Ranch Roundabout to SR 89A
- Glassford Hill Road
- Willow Creek Road
- Whipple Third Connector
- SR 89 - Center Street north through Paulden
- SR 69 and Glassford Hill Road
- SR 89 between Prescott and Chino Valley
- As our population increases all main roads in PV will be affected

3. Are there any areas in which this study should focus to improve transportation conditions or connections?

- Alternative routes from SR 89 through the City of Prescott. Events downtown cause huge bottlenecks.
- SR 89A - SR 89 to SR 69
- How long will Williamson Valley Road function as a two lane road? How long will the realigned Willow Creek Road function as a two lane road? Establish a timeline for Great Western.
- Especially the intersection of Glassford Hill Road and SR 69.
- Glassford Hill Road to Outer Loop in Chino Valley.
- Widen SR 89 from Paulden to Prescott.
- Public transit including bus, light rail, and air within communities and between communities. Alternative transportation facilities for pedestrians and bicyclists.
- To keep traffic moving traffic lights must be synchronized on all major roads.

4. If options were provided, how would you prefer to travel?

MODE OF	RESPONSES	PERCENTAGE
TRANSPORTATION		
PERSONAL VEHICLE	4	44.5%
PUBLIC TRANSIT	2	22.2%
WALK/BIKE	3	33.3%
OTHER	0	

5. Do you have any other comments?

- Retrofitting existing roads to be more accommodating to bicycle and pedestrian travel and crossing.
- Possible evaluation of a short connector from Sara Jane Lane (SR 69) to SR 169 until the Fain to SR 169 could be built.
- Keep me informed. Thank you.
- Implement practices and policies to reduce motor vehicle number of trips, resulting in the lowering of maintenance, widening, and new construction costs.
- Complete non-motorized trail system connecting Prescott, Prescott Valley, DeweyHumboldt, Chino Valley, and Skull Valley.
- Request ADOT to provide wildlife corridor information and funding for wildlife road crossings.
- Public transit routes: Prescott, Prescott Valley, Chino Valley connections.
- Smart growth policies: shop, work, government, recreation where you live—not requiring a motor vehicle.

Comments drawn on maps can be found on the following page.

Central Yavapai Metropolitan Planning Organization
Regional Transportation Plan Update 2040
Public Meeting 1 Summary
May 2014

CYMPO RTP Update Study Area

For more information, contact:

Appendix A: Comment Forms

Central Yavapai Metropolitan Planning Organization
 Regional Transportation Plan Update 2040
 Public Meeting 1 | Comment Form
 April 23, 2014

Name:

Email Address:
Jimikanup
© GMAL COM

1. On which roads do you currently experience the most traffic delays?

2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (year 2040)?

3. Are there any areas in which this study should focus to improve transportation conditions or connections?

BOTtLENECKS
4. If options were provided, how would you prefer to travel?
\square Personal Vehicle

圈 Walk/Bike
\square Other: \qquad

5. Do you have any other comments?

 ACCOMODATINR TO BICYCLE Q PEDESTRIAN TRAVES Ans cosine

Please submit your comments no later than Friday, May 9, 2014. Comments can be submitted by:

Mail:	CYMPO RTP c/o CYMPO	Email: Christopher.Bridges@yavapai.us Telephone: 928.442 .5730
1971 Commerce Center Circle	Completion of this comment form is voluntary and helps the study team Suite E	keep accurate record of comments received. Under state law, any identifying information provided will become part of the public record, and as such, must be released to any individual upon request.
	Prescott, AZ 86301	

Central Yavapai Metropolitan Planning Organization
 Regional Transportation Plan Update 2040
 Public Meeting 1 | Comment Form
 April 23, 2014

Name: \qquad
Email Address: MIKE. WMLETT © YAUAPAT.US

1. On which roads do you currently experience the most traffic delays?

$$
\text { SR } 89(\text { cornu To SR89A), SR } 69(5 R 89105 R 169)
$$

SR 89A - (GRANITE DOUSPARKWAY TO VIEWPOINT) GLASSFORD IHUSRD. WILLOW CREEK ROAD (S RIA TO IRON SPRINGS), SHELDON ST, GURLEYST.
2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (year 2040)?
SR EA (S R89 TO ROBOT RD), SR 69 (S R89T0 SR 169), SR 169 (SR 69 TO OUR CHARR

3. Are there any areas in which this study should focus to improve transportation conditions or connections?

 SR 89A (S R89 TO SR 69), How CONG WLL WHLUAMSON YALCOYROAB towetion AS A 2 LANE ROAD. HOW CONE URL THE REALIGNED D WILLOW CREEK READ FINGTON AS A Z LINE ROAD. ESTABLISH A TIMELInE FOR GREAT WESTERN
4. If options were provided, how would you prefer to travel?

\square Walk/Bike
Other: \qquad

5. Do you have any other comments?

POSSIBLE EVALUATION OF A SHORT CONNECTOR FROM SARAIANE LANE (SRG9)

$T 0$ FR 169 UNTIL INEEATN TO 169 corN BE BUTL.

Please submit your comments no later than Friday, May 9, 2014. Comments can be submitted by:

Mail: CYMPO RTP
c/o CYMPO
1971 Commerce Center Circle
Suite E
Prescott, AZ 86301

Email: Christopher.Bridges@yavapai.us
Telephone: 928.442.5730
Completion of this comment form is voluntary and helps the study team keep an accurate record of comments received. Under state law, any identifying information provided will become part of the public record, and as such, must be released to any individual upon request.

Central Yavapai Metropolitan Planning Organization
 Regional Transportation Plan Update 2040
 Public Meeting 1 | Comment Form
 April 23, 2014

Name:
Kim Moon
Email Address:

1. On which roads do you currently experience the most traffic delays?

2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (year 2040)?
\qquad
\qquad
\qquad
3. Are there any areas in which this study should focus to improve transportation conditions or connections?

4. If options were provided, how would you prefer to travel?
Personal Vehicle
\square Public Transit
5. Do you have any other comments?

Please submit your comments no later than Friday, May 9, 2014. Comments can be submitted by:

Mail:	CYMPO RTP c/o CYMPO	Email: Christopher.Bridges@yavapai.us Telephone: 928.442 .5730
	Suit Commerce Center Circle	Completion of this comment form is voluntary and helps the study team
	Suite E ace an Prescott, AZ Bate record of comments received. Under state law, any identifying information provided will become part of the public record, and as such, must be released to any individual upon request.	

Central Yavapai Metropolitan Planning Organization
 Regional Transportation Plan Update 2040
 Public Meeting 1 | Comment Form
 April 23, 2014

Name:

Email Address:
 orin box.cone

1. On which roads do you currently experience the most traffic delays?

2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (year 2040)?
\qquad
\qquad
\qquad
3. Are there any areas in which this study should focus to improve transportation conditions or connections?
\qquad
\qquad
4. If options were provided, how would you prefer to travel?
Personal Vehicle
\square Public Transit
\square Walk/Bike
\square Other: \qquad
5. Do you have any other comments?

Please submit your comments no later than Friday, May 9, 2014. Comments can be submitted by:

Mail: CYMPO RTP
c/o CYMPO
1971 Commerce Center Circle
Suite E
Prescott, AZ 86301

Email: Christopher.Bridges@yavapai.us
Telephone: 928.442.5730
Completion of this comment form is voluntary and helps the study team keep an accurate record of comments received. Under state law, any identifying information provided will become part of the public record, and as such, must be released to any individual upon request.

Central Yavapai Metropolitan Planning Organization
 Regional Transportation Plan Update 2040
 Public Meeting 1 | Comment Form
 April 23, 2014

Name: DONACD MUTZIGER
Email Address: drmca/12@ email. Com

1. On which roads do you currently experience the most traffic delays?

8 P THRU CHINO
2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (year 2040)?

3. Are there any areas in which this study should focus to improve transportation conditions or connections?

4. If options were provided, how would you prefer to travel?

$$
\begin{aligned}
& \text { Personal Vehicle } \\
& \square \text { Public Transit }
\end{aligned}
$$

Walk/Bike
Other: \qquad
5. Do you have any other comments?

Please submit your comments no later than Friday, May 9, 2014. Comments can be submitted by:

Mail: CYMPO RTP
c/o CYMPO 1971 Commerce Center Circle Suite E Prescott, AZ 86301

Email: Christopher.Bridges@yavapai.us
Telephone: 928.442.5730
Completion of this comment form is voluntary and helps the study team keep an accurate record of comments received. Under state law, any identifying information provided will become part of the public record, and as such, must be released to any individual upon request.

Central Yavapai Metropolitan Planning Organization
 Regional Transportation Plan Update 2040
 Public Meeting 1 | Comment Form
 April 23, 2014

Name: Thomas Sabock
Email address: Prescott Kid@peoplepc.com

1. On which roads do you currently experience the most traffic delays?

Nous, with the exception of continued construction projects which ane making us like Phoenix and S. cal where everything is constantly torn up. If Imutorive, I do it before or after
2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (year 2040)?
3. Are there any areas in which this study should focus to improve transportation conditions or connections? public transit including bus, líghtrail, of air within communitiés and between communities. Alternative transportation facilities for pedestrian and bicyclists.
4. If options were provided, how would you prefer to travel?

\square Personal Vehicle	Walk/Bike (commuted to work for 36 years)
\square Public Transit	\square Other:

5. Do you have any other comments?
6. Implement practices policies to reduce inter vehicle number of trips, resulting in the bering of mosintennoce, widening, and new construction casts.

Please submit your comments no later than Friday, May 9, 2014. Comments can be submitted by:

Mail: CYMPO RTP
c/o CYMPO
1971 Commerce Center Circle Suite E
Prescott, AZ 86301

Email: Christopher.Bridges@yavapai.us
Telephone: 928.442.5730
Completion of this comment form is voluntary and helps the study team
keep an accurate record of comments received. Under state law, any identifying information provided will become part of the public record, and as such, must be released to any individual upon request.
2. Complete non-motorized trail system connecting Prescott, Prescott Valley, Dewey-thumboldt, Chino Valley, and Skull Valley.
3. Request ADOT to provide wildlife corridor information and funding for wildlife road crossings,
4. Public transit routes: Prescott, Prescott Valley, Chino

Valley connections.
5. Smart growth policies: shop, work, government, recreation where you live -not requiring a motor vehicle.

Central Yavapai Metropolitan Planning Organization

Regional Transportation Plan Update 2040
Public Meeting 1 | Comment Form
April 23, 2014
Name: A Joseph Zambito
Email Address: \qquad

1. On which roads do you currently experience the most traffic delays?

$$
\begin{aligned}
& \text { I do not drive but it would be Nice to } \\
& \text { Syneronize The Traffic Lights on Robert Rd and a } \\
& \text { Few other PV Streets }
\end{aligned}
$$

2. What areas within the CYMPO planning boundary or specific roads do you anticipate significant traffic delays in the future (year 2040)?
As our pofouletion inerreises all main roodsiti pl witt be
AFFected
3. Are there any areas in which this study should focus to improve transportation conditions or connections?
 on ALL maJor Racks

4. If options were provided, how would you prefer to travel?

\square Personal Vehicle
\square Walk/Bike
Other:
\qquad
5. Do you have any other comments?
PU has many semions. In Time, most will depend on
Public TRansportation As they continueto pie and
Poor Reflexes

Please submit your comments no later than Friday, May 9, 2014. Comments can be submitted by:

Mail: CYMPO RTP
c/o CYMPO
1971 Commerce Center Circle
Suite E
Prescott, AZ 86301

Email: Christopher.Bridges@yavapai.us
Telephone: 928.442.5730
Completion of this comment form is voluntary and helps the study team keep an accurate record of comments received. Under state law, any identifying information provided will become part of the public record, and as such, must be released to any individual upon request.

Appendix B: Sign In Sheets

SIGN N Central Yavapai Metropolitan Planning Organization
Regional Transportation Plan Update 2040 | Wed., April 23, 2014 5:30 p.m. to 7:30 p.m. | Town of Prescott Valley

NAME	ADDRESS	
Thumas Staback	7/5 E. Goodwin St, Prescott 86303	
coayle lapointe		
BOYD ROBERTSONS	Town of prescoti valley	
Norn Davis	Town of Presogt valley	davise puazinet
T.G. Brady	9970 E Shirleylane Dewy Az	
- sim S/nave	200 PARKOR RI) PREFSCOTt 86303	3IM.KNAUP@GMAHL.COM

THANK YOU
for participating!

SIGN N Central Yavapai Metropolitan Planning Organization
Regional Transportation Plan Update 2040 | Wed., April 23, 2014 5:30 p.m. to 7:30 p.m. | Town of Prescott Valley

NAME	GANIZATION ADDRESS	EMAIL Centra Yavapal Metropolitan
EsFizLDing	21350 v. Hackamone Paunsol $\mathrm{V}_{2} 86334$	EEFIELDINg @ GMAM. Com
Terry Nolan	3378 S. Hwy 69 - P0, Box z67 Humboldt	mayer,Nolun@dh ${ }^{\text {zzigov }}$
Toure Sheats	1242 Cromn Ridy Presort	9Sheats © aol, con
coranion wo nob	1638 Uhite Nopl lina promit	Suow ${ }^{\text {Se }}$
Kay Giler	Pro.3ux 26962 iusi 312 (3459 Clivistios)	,

THANK YOU
for participating!

Central Yavapai Metropolitan Planning Organization
Regional Transportation Plan Update 2040 | Wed., April 23, 2014
1 p.m. to 3 p.m. | Town of Prescott Valley
CYMPO

NAME	ORGANIZATION ADDRESS	
Son Mutziger	6370 N. Dacley Wry, Pavaden	drmcal 12@gmaic.cour
Linat mutz igerz	6370 N. DaCLEY WAY, PAULDEN	
Norm Davis	Town of Prescott valley	ndavise puaz.net
BOTD ROBERTSON	11	brobertsonepuaz.net
Bob LaJeunesie	ADOT	rlajeunesse@azdot.gov
Sharon+Nich Kaplan	840 Flying U Court, Prescott	rich 27 kegmail.cam/shewon27kegmail.con

THANK YOU
for participating!

SIGN IN

Central Yavapai Metropolitan Planning Organization
Regional Transportation Plan Update 2040 | Wed., April 23, 2014
1 p.m. to 3 p.m. | Town of Prescott Valley
CYMPO

THANK YOU

for participating!

AECOM -

Regionalluransportation Plan Update 2040

Public Meeting

September 29, 2014

Agenda

- Key study members
- M eeting purpose
- History and background
- Schedule and process
- Study area
- Existing and projected population, employment and traffic
- Regional recommendations (2040 and 2025)
- Intersection improvements
- Next steps
- Question and answer session

Key Study Members

- CYM PO
- Arizona Department of Transportation
- City of Prescott
- Town of Prescott Valley
- Town of Chino Valley
- Town of Dewey-Humboldt
- Yavapai County

Meeting Purpose

- Update the community on the schedule and process
- Present existing and projected population, employment, and traffic data
- Solicit input on the draft 2040 and 2025 regional recommendations
- Community's project priorities

History and Background

What is CYM PO?

- Central Yavapai M etropolitan Planning Organization
- Partnership between ADOT, Chino Valley, Dewey-Humboldt, Prescott, Prescott Valley, and Yavapai County
- Responsible for planning the transportation system for the Central Yavapai region (encompasses about 400 square miles)
What is a Regional Transportation Plan (RTP)?
- A long-range (25-year) vision for the regional transportation system

History and Background

Why update the plan?

- Legislation requires updates to RTPs every five-years
- Economic recession has caused dramatic changes in expected population growth

Purpose of This Update

- Adjust traffic projections to more accurately reflect population and employment growth
- Extend the life of the existing roadway network by identifying high impact / low cost improvements
- Recommend future improvement projects and identify funding opportunities

Schedule

Public Meetings

Process

REVIEW EXISTING DATA
Develop and validate traffic model for
2010 using the population census
VERIFY WITH THE
GENERAL PLAN
Population
Employment

DEVELOPED THE 2040 AND 2025 Recommended Regional Plans
 Immediate projects
 Interim 2025 projects
 Long term 2040 projects
 Beyond 2040 projects

Study Area

Existing and Forecasted Population

Existing Population

Forecasted Population (2040)

Existing and Forecasted Employment

Existing Employment

Forecasted Employment (2040)

Existing and Forecasted Traffic Operations

Existing Conditions

2040 Forecasted Conditions

2040 \& 2025 Network Evaluation

- Developed four 2040 network alternatives
- Evaluation Criteria
- Traffic operations
- M obility and Accessibility
- Planning Consistency
- Right-of-way
- Environmental Justice
- Safety
- Cost
- Implementation
- Developed preliminary recommendations

2040 Draft Network Recommendations

2040 Traffic Operations

2040 No-Build Conditions

2040 Recommended Conditions

2025 Draft Network Recommendations

0

.-. Possible Improvements Shown in Pink
A. SR 69 - Widen to 6 lanes - Spot improvements only
B. SR 89A Robert Rd TI
C. Glassford Hill Rd - Widen to 6 lanes
D. Side Rd Connector -- New 4-lane road
E. Stoneridge Dr - New 4-lane road

2025 Traffic Operations

2025 No-Build Conditions

2025 Recommended Conditions

Intersection Improvements

- SR 89A and SR 89 Traffic Interchange
- Existing Simulation
- M odification Simulation
- SR 69 and SR 169 Intersection
- SR 89A Traffic Interchanges

Next Steps

- Incorporate input from public into plan
- Write and finalize report
- Present final plan to CYM PO Board for approval by end of the year

Question and Answer

Overview

The Central Yavapai Metropolitan Planning Organization (CYMPO) encouraged communities within its planning boundaries to participate in public meetings scheduled for Monday, September 29 between 1 p.m. and 3 p.m. and 5:30 p.m. and 7:30 p.m. to provide input on the existing transportation needs and areas where the study should focus. Both meetings were held in the City of Prescott council chambers.

A brief presentation was made by Kate Bondy, Project Manager with AECOM, followed by a question and answer session. In total 32 people signed in from the communities including elected officials and local government representatives. All written comments can be found in Appendix A: Written Comments, copies of the sign in sheets can be found in Appendix B: Sign In Sheets, and the meeting handout is in Appendix C: Meeting Handout.

The following summarizes the discussion at both of the public meetings.

Questions and Answers:
 1:00 p.m.

Q: In the population projections, what are the new percent projections for growth in the study area?
A: $\quad 3 \%$ per year; it was 270% previously.

Q: Is there a transit component to the plan? Does it mention it in this plan?
A: There is a transit study identifying a new funding source for a sustainable transit system. Not completely incorporated into this plan. All other plans are summarized in this plan.

Q: Is the start date for the growth population 2010 ? So, 3% each year from 2010 to now?
A: Yes.

Q: In terms of demographics projections, we have a higher percentage of retirees, which is a higher death rate. Is this taken into account? Did you look at where the areas are that have the large percentage of retirees, with least potential for growth? Attractors for growth - what did you use as assumptions for jobs? In terms of big landowners, Big Chino is privately held, several subdivisions planned, what assumptions were made with that? In terms of classical modeling, what kind of confidence factor do you have? Since so much of the study area is within the Prescott active management area for water, what assumptions were made about ratio for private wells vs. development?
A: Yes, the numbers came from the DES, and then we took the allocations from the general plan. We look at retirement areas as employed vs. non-employed. We don't track as a separate group. From 2010 to 2040, some workers changed; Higher growth of retirement age. We use the DES, we also look at the general plans, including the airport area, medical center, and major land owners around SR 89A and added into projections. We gave the population projections to agencies for them to verify. Yavapai Ranch, Las Vegas Ranch, talked to County development services. Not a lot happening with Yavapai Ranch. We stopped at Big Chino Rd. Validated to existing conditions, using percent error and route-mean-square, within 5% and some within 10% of counts. Tried to stay within 15%. If the jurisdiction has a water element where a project's affected, then it's included in the plan. If it's in a general plan, it is being considered. The plan is updated every five years. ADOT provides traffic projections.

5:30 p.m.

Q: Does congestion take into account automated vehicles?
A: We use historical data from past and present based on behavioral trends.

Q: Are projects J, K and L regional? Would like to see a greater emphasis on Sun Dog Connector and 69 and Old Black Canyon to get pressure off 69 with no traffic signals. Develop this now rather than widen 69. Fain Road connector to 169 doesn't need 4 lanes.
A: Project K implemented would be regional. Depends on development north of 89A. We did look at improving Sun Dog and projects S+T to relieve 69. It helps, but we need both. All roadways are still in plan for 2040. Fain Road doesn't have the demand by 2040. Will consider it in the plan. It's more expensive and harder to build in outlying areas. It will be evaluated again in five years.

Q: To confirm, Willow Creek Road Realign is Phase 1 in the five-year plan. Granite Dells wants to prevent a four-lane, but may need it in the future (red).
A: Phase 2 is Deep Well Ranch Road. We left the Dells now, but may need to build four lanes - would need to blast for more ROW. Willow Creek Road is in no-build alternative. East-west Road (M) side road connector includes a bridge in 2025.

Q: What does environmental justice mean? ADOT has the responsibility of looking at environmental impacts on wildlife corridors with roadway widening. Pronghorn loss - what are you doing to plan ahead? Wildlife overpasses? On 93? On 89 at the fairgrounds the wire fence has the bottom wire. Why?
A: AZG\&F and ADOT have wildlife linkages, tracked herds and crossing points and we are involving them earlier in the land use plan as part of the zoning phase. We've been working for four to five years with AZG\&F to help plan and get grant funding. There's game friendly wire - ADOT maintains the highway fencing. We will need to check on the fencing near the fairgrounds.

Q: ADOT won't get involved in wildlife unless asked by local agency jurisdiction.
A: Yes, we have talked to ADOT. Will be coordinating to get a letter. We aren't a jurisdiction, but are working on it with ADOT.

Q: Regarding the Sundog Connector - two years ago a meeting was held at Yavapai Hills. The road was described as a narrow 2-lanes; another public meeting it was described as a 4-lane. This would be a disaster to wildlife, trails. It's not needed and I want it removed from the 2040 plan.
A: \quad This project was in the past plan and we evaluated all the projects. Still modeled that it carried traffic. The City of Prescott is responsible for this project. But, there is no money for the project. CYMPO is focusing on 89,69 , and 89 A. Please come to the TAC and Board meetings to voice your opinion.

C: Would like to see a plan for alternative plans for bicycles.
A: That will be included.
Q: How soon will a turn lane be implemented at 89 ?
A: It depends on funding. If money is available, it needs to be programmed, designed and then built. If there is money, that could take a year or two.

Q: In the population projections, did you think about density for currently undeveloped land and was consideration given to water?
A: The base model came from the ADOT statewide model. Projections for 2040 came from DES and DOA. These were verified with each general plan. Each jurisdiction reviews to verify land use. We have talked to major developers and land owners. Water needs are not typically included in transportation plans. If the jurisdiction includes water in their plans, it will be included in the RTP, but indirectly.

C: I'd like to be included to continue to provide input on conservation with the RTP. We need to be creative with land use planning and development.
A: CYMPO presents to the TAC on the first of each month. Check the agenda and also can attend the next board meeting. This is an on-going plan.

Q: When do you start looking for money? Where does it come from? How involved are citizens?
A: Prioritizing projects is important for the region. Local funding comes from local tax or gas tax (primary source since 1993). ADOT projects are federally funded, which covers right of way, environmental, and mitigations. CYMPO only gets \$600,000 per year; about \$8 million since 2003. Could take 10 years with federally funded projects. We are constantly looking at priorities.

Q: Would CYMPO recommend speed reducing in Paulden? At least speed limit signs?
A: We work with ADOT on a roadway safety assessment to evaluate the needs. Safety funding is separate. We will keep the dialogue with ADOT.

C: There is a lot of commercial development interest on Big Chino Rd in Paulden. Development could have a huge impact on 89 corridor traffic.
A: Our boundary of this study doesn't go to Paulden, but we work with the county. Developers would have to go through the zoning process. We could always go back to ADOT to run the traffic model again.

Verbal/E-mail/Mail Comments:

- All the good plans you outlined at the meeting will be for naught if the traffic lights are not programmed for better traffic flow. I take 69 from PV to Prescott and get stopped by many of the lights. The same is true on Glassford in PV. With more traffic the desire will be to add more lights to control traffic. This will cancel the added lanes.
- This is regarding traffic around Prescott area. We need the four-lane Sundog Connector first to relive the traffic on 69. We could have two ways into Prescott or over to the Crossings, etc. on North Willow Rd from Prescott Valley. Next should be 69 with 3 lanes on each side from 169 on into Prescott. Better for emergency vehicles and traffic.
- I live in Chino Valley on Road 2 South just east of Road 1 West. When I was on the Chino Valley Planning committee study group in the early 2000's, it had been decided that the outer loop road would suffice for a large population growth. So now you think that making a major road just 2 miles north would help a lower population? I clearly remember that it was decided to consider Center or Road 5 from Chino as a connector road due to the existing properties at Talking Rock, etc. wishing to gain access to the local Safeway. However by looking at your map I notice that it seems convenient that more "up-scale" communities are not involved in how a
road will be built even though the residents back had stated that they did desire a connector road. So I guess it is a mute point to hear the concerns of a single taxpayer when other taxpayers choose not interact.
- In developing the CYMPO Regional Transportation Plan, there is a great need to consider the impact on wildlife of highway expansion and the resulting land fragmentation in Yavapai County and Arizona. In researching this topic, I found valuable information in the Arizona Game \& Fish publication "Wildlife Field Notes, Volume 5." Scott Sprague and Jeff Gagnon presented valuable information related to Pronghorn populations, which can be extrapolated to other wildlife species as well. I am including many of their ideas, which correlate strongly with my own.
- Land fragmentation poses the greatest obstacle to long-term viability of many species. Highways often create a barrier to "seasonal migration and gene flow." This lack of wildlife connectivity corridors results in local extinction such as was the case with the Prescott Pronghorn herd.
- Research has shown that Pronghorn are reluctant to cross roads. One crucial fact I learned was that because of their diurnal movements, as opposed to nocturnal deer and elk, Pronghorn must deal with higher traffic volumes and resultant mortality rates. This fact poses a threat not only for the Pronghorn, but also for motorist fatalities.
- The following are recommendations in consideration of federal law MAP-21, which requires mitigation of wildlife and land fragmentation in highway construction.
- 1. Implement wildlife connectivity corridors. A design was created by the Ecosa Institute in the Fall of 2012 entitled "Great Western Corridor: A Dynamic Vision for Life in the West." It outlines how these corridors could be established through land swaps, conservation easements and joint planning. (I am in the process of obtaining copies of this study for CYMPO use.)
- 2. Modify highway right-of-way fences designed to keep livestock off roadways so Pronghorn can pass under, rather than over, them as they prefer. Many ranchers have been cooperative in removing the bottom barbed wire from their fencing in order to assist the Pronghorn. It should be required universally.
- 3. Based on identification of the preferred migratory corridors, create wildlife overpasses to assist the various animals to cross highways. This is especially important for the Pronghorn since they are a prey animal and resistant to using underpasses unless they have a clear vision capability. For those who would complain about the cost of such overpasses, remember that just one recent human fatality settlement in a wildlife collision case was millions of dollars.
- There are numerous people concerned about the future of non-fragmented natural space, conservation of native grasslands and the preservation of indigenous wildlife who would be willing to contribute on their behalf. Please consider our input and let us participate in the process of saving the environment we love. (*See additional comments in appendix)
- I am pleased to see the elimination of a new road south of Hwy 69 that in the 2030 Plan appeared to cut through many established residential neighborhoods. If 69 is expanded to six lanes, the additional parallel road should unnecessary.
- I also agree that the bypass east of Prescott Valley from I-17 to 89 N can be eliminated. The road system we have now, with Fain Road and 89A seems adequate for future growth during the current planning period
- As we move forward with a more detailed plan, I encourage CYMPO and other transportation agencies to incorporate bike lanes and pedestrian ways in all roads shown on the plan. Hwy 69 is currently extremely dangerous for bicycles and pedestrians in locations where there is no other place to go but on the side of the road. A bike lane, which is at least six feet wide, would be desirable, giving enough room for the occasional pedestrian. A separate paved bike path is preferable, where there is adequate right of way.
- A plan for future roadway improvements should include a means for wildlife to cross the highway. To my knowledge, there are at least two wildlife crossing paths that affect the roads shown in red on the 2040 Recommended Network: Hwy 89N between the airport and Chino Valley; and Hwy 69 between the Mall and Prescott Resort. I encourage CYMPO to include these crossings in their plans, to work with state and federal agencies that have jurisdiction over wildlife, and to seek federal funding for additional crossing facilities that will be effective in allowing wildlife to cross without endangering the people who drive these highways.
- I object completely to any roads that will cross the Deep Well Ranch. This seems totally unnecessary! Does anybody ever consider the wildlife?

Written Comments Received on Comment Forms

1. Please let us know what comments you have on the draft 2040 Regional recommendations:

- There have been 2 public meetings on Sundog Connector. Two years ago the public was ready to lynch you over a two-lane road. It was thought to be dead. A year later it came back and the public was ready for tar and feathers. Now it is back as a four-lane highway. Who keeps pulling the stake out of this vampire's heart? This road would be an environmental disaster, destroying open space, wildlife, habitat, trails with new barriers created by its construction. Remove from plan.
- Paulden needs an improved area north of Big Chino Wash and south of Big Chino Road.
- It seems that the major focus has been and continues to be focused on building more roads and hoping that will help with any congestion problems. However, that fails to address other needs of the community like retirees and disabled people that have either given up their driving privileges or never had them to begin with. These people still need to get to the stores for groceries and other items, they still need to get to doctors offices, they still need to get to the polls to vote. Yet, there is very little in this plan, or any previous plans on how this area is going to address this growing segment of the population now and into the future. This is an issue that will not go away, unless the people move to other communities where transit and transportation for their citizens is considered a priority.
- I am strongly opposed to the Sundog Connector roadway in any form.
- On the map of the 2040 network, show the corridors that were pushed out into the future as a dashed line for future study. Call them "future corridors," such as the remainder of Great Western, the Chino Valley Extension, and the Fain to SR169 Connector if there is consensus from the CYMPO member agencies to show this.
- I have lived out Rd 2 south for over 20 years now, the amount of new homes, traffic has increased incredibly. On a average day the road is unbelievable and very dangerous. There are so many people that use it that I can't start to maintain it anymore, (I used to try to blade it 4-5 times per year) when it's dry, the dust can be so thick I'm amazed the people who live along it don't file complaints to ADEQ, I know that in our business if we made $1 / 3$ the dust that that little road can put off on any average morning or evening, we would be shut down immediately.

When it's muddy forget getting emergency vehicles in or out, not to mention that most any emergency vehicle cannot navigate the road safety at more than 5 mph at best. There are over 400 tax paying property owners that use the road steady, I've watched the county improve roads with far less traffic and or home owners (very frustrating) I could go on an on but will stop for now, if there's any project that should be front and center, it would be rd2 south.

- We feel there are way too many roads in areas that are prime pronghorn habitat, especially those near the airport. Even now, the roundabout has driven away the herd that was there just six months ago. In addition, Lakeshore Drive and Fain Road cut right through pronghorn habitat--they need wildlife corridors now--before the herds are gone.
- In developing the CYMPO Regional Transportation Plan, there is a great need to consider the impact on wildlife of highway expansion and the resulting land fragmentation in Yavapai County and Arizona. In researching this topic, I found valuable information in the Arizona Game \& Fish publication Wildlife Field Notes, Volume 5. Scott Sprague and Jeff Gagnon presented valuable information related to Pronghorn populations, but which can be extrapolated to other wildlife species as well. I will be including many of their ideas which correlate strongly with my own. Land fragmentation poses the greatest obstacle to long-term viability of many species. Highways often create a barrier to "seasonal migration and gene flow." This lack of wildlife connectivity corridors results in local extinction such as was the case with the Prescott Pronghorn herd. Research has shown that Pronghorn are reluctant to cross roads. One crucial fact I learned was that because of their diurnal movements, as opposed to nocturnal deer and elk, Pronghorn must deal with higher traffic volumes and resultant mortality rates. This fact poses a threat not only for the Pronghorn, but also for motorist fatalities.
- It would be great if road 2 south was paved. It would help out parents that need the bus to come closer to their house. I live off of 2 south and would love to see this road paved.
- I just read about the possibility of making Road 2 South into a connector road to Williamson Valley. I LOVE this idea! I live on Rd. 2 South, so I understand that for a while it would be a pain with the construction, but it would be so worth it! It would save our cars on the bumpy roads, and it would make it so much easier to get my son to work. He works on a ranch out in Williamson Valley and this would cut down a lot of miles and time to get him there. I really hope to see this move forward. I am in total support of it.

2. Do you think the team missed any important information in the draft $\mathbf{2 0 4 0}$ recommendations?

- What plans CYMPO and the various city and town councils plan to do to address the growing need for transit in the CYMPO area. This is a need that is not going to diminish and will not go away if it is ignored. It must be addressed by leaders thinking boldly and courageously for the good of their communities.
- The widening of Rt 69 from Prescott Valley to the Rt69 Rt 89 junction should be included, along with the synchronization of the 4 traffic lights from the Prescott Lakes Parkway to the Walker Road intersections on Rt.69.
- Yes, the Sundog Connector needs to be relocated up the hill further to minimize the impact on the homeowners in Yavapai Hills from its proposed location.
- This is significant in both plans. I am concerned about the fragmentation of wildlife and maintenance of wildlife corridors. The existence of Pronghorn is a very good indicator of the overall health of the ecosystem, and I would like to see the preservation of those herds be given the highest priority, to include overhead wildlife crossings and realignment of roads to lessen
the impact of new roads on the already fragmented and stressed herds of Pronghorn. Thank you!
- We strongly encourage the inclusion of SPECIFIC PLANS to preserve wildlife, developed with the input of a variety of local wildlife conservation experts. In looking through the last plans, there don't appear to be any plans for how CYMPO will preserve wildlife, something most people in the county really like (which is noted in one report). Roads and wildlife don't mix well. We feel any plans for roads must address preservation of wildlife, and can't just be lip service.
- The following are recommendations in consideration of federal law MAP-21, which requires mitigation of wildlife and land fragmentation in highway construction. 1. Implement wildlife connectivity corridors. A design was created by the Ecosa Institute in the Fall of 2012 entitled "Great Western Corridor: A Dynamic Vision for Life in the West." It outlines how these corridors could be established through land swaps, conservation easements and joint planning. (I am in the process of obtaining copies of this study for CYMPO use.) 2. Modify highway right-of-way fences designed to keep livestock off roadways so Pronghorn can pass under, rather than over, them as they prefer. Many ranchers have been cooperative in removing the bottom barbed wire from their fencing in order to assist the Pronghorn. It should be required universally. 3. Based on identification of the preferred migratory corridors, create wildlife overpasses to assist the various animals to cross highways. This is especially important for the Pronghorn since they are a prey animal and resistant to using underpasses unless they have a clear vision capability. For those who would complain about the cost of such overpasses, remember that just one recent human fatality settlement in a wildlife collision case was millions of dollars.

3. Please let us know what comments you have on the draft 2025 Regional recommendations:

- I am strongly opposed to the Sundog Connector project in any form.
- The map or the text of the report needs to be clear that the Robert Road Interchange is not the only SR89A interchange recommended to be constructed or improved by 2025 . For example widening Glassford Hill Road to 6 lanes may be needed but the Glassford Hill Interchange may need to be improved to be able to get the 6 lanes of traffic on and off of SR89A. The 2025 recommendations need to include a recommendation to do further study along SR89A from SR89 to the new Robert Road Interchange to determine the priority of improvements based on the growth and traffic projections.
- One of the best things about Central Arizona is the unique wildlife in the area. The Central Arizona Land Trust (CALT) wishes to express its strong support for mitigation of the negative impact road building has on wildlife. In particular, we support placing roads near existing development to avoid fragmenting grasslands, and thus the pronghorn herds that rely on that habitat. As shown in AECOM-2025 Network Recommendations, the proposed Side Road Connector and Stoneridge Drive projects would cut directly through antelope habitat, stranding what remains of those herds. We urge CYMPO to reconsider these roads, or at least move them closer to the existing roads and development. In addition, CALT strongly urges the construction of overhead wildlife crossings. We recommend continued work with AZ Game \& Fish, but encourage CYMPO to take the advice of other experts in wildlife conservation, as well, so that pronghorn and other animal populations in Central Arizona will be sustainable.
- If Glassford Hill is to be widened to six lanes, we don't support the creation of a Side Road Connector + new Stoneridge Drive. Building new roads will further cut off the pronghorn herd. 89A (expanded in 2040 plan) and Glassford Hill (expanded in 2025) are very close to the locations of these proposed roads. We are not convinced that they are necessary, and feel strongly that they will be detrimental to wildlife, and thus quality of life.

4. Do you think the team missed any important information in the draft 2025 recommendations?

- 1. Wildlife corridors and mitigating the bisecting caused by road construction; 2. Alternative transportation (bicycle \& pedestrian); and 3. Mass transit (including connections to \#2).
- We believe that a detailed, specific plan as to how wildlife issues will be addressed should be included in the plan. We would like to see specific plans for the creation and maintenance of overhead wildlife corridors.

5. Do you have any other comments?

- If shoulders are constructed with curbs (as is happening on 89 widening between Prescott and Chino Valley) it needs to be wider than normal as it limits escape range for alternate transportation modes.
- Transit and transportation can enhance the communities in ways that cannot always be quantified in dollars and cents. Take a look at that various communities around Arizona that have active transit systems and ask the people that ride and use those systems what their lives would be like without the transit system. Ask the business owners along the routes where the buses travel and how the buses travelling by their shops have affected their businesses. Ask the dialysis patients that rely on the Para transit service provided by the local transit service to get them to their life-giving treatments three times a week without fail, on time. Ask the workers that use transit to get to and from work every day what they would do if they were forced to drive every day, if they could afford the gas and maintenance on a vehicle to get to and from work. Transit is more than just buses move people around a community. Transit make the community a better place to live for everyone and makes it possible for more people to enjoy the various benefits that living in a community like Prescott, Prescott Valley, China Valley, DewyHumbolt bring to them. The benefits of a viable transit system far outweigh the costs in greater community services utilized, more revenues to business, more people able to get to work, more people able to get to needed healthcare. Transit is a plus for any community.
- The elimination of the entrance to the Gateway Mall exit on from the north bound Rt 69 would smooth traffic flow by elimination the traffic light at that spot. There are two other entrances available to northbound Rt. 69 traffic.
- It is not appropriate to remove a corridor from the study based on an comment from any individual who thinks that a corridor like the Sundog Connector be withdrawn solely based on their desire to see it be kept as open space or wildlife habitat. Any corridor planned on private land cannot be designated as open space or wildlife habitat without the consent of the private landowner or some requirement placed on a developer by a governmental entity during the land development approval process. Furthermore if the corridors are not properly planned the private landowner/developer will most likely provide some kind of circulation system for the developed land and it be will much worse to "daisy chain" pieces of roadway together for traffic circulation than it would be to properly plan the corridor and its connection to our arterial roadways. If proponents of wildlife habitat and open space want to eliminate roadways on private land then they need to either work though the jurisdiction with the authority to approve the land development or purchase the land.
- Please make road 2 south a connecter road.
- Please consider this as one more public effort to support and encourage CYMPO to make every effort to include wildlife and multi-modal corridors in current and future planning efforts for road expansions and current road situations. As chairman of Community Forest Trust and member of the General Plan I am requesting as always that you submit to ADOT my/our request
for the implementation of wildlife corridors especially since you are cognizant of the extreme severity of the wildlife kills here in Yavapai County.
- Not at this time, but CALT would be very happy to work with CYMPO on wildlife/conservation issues.
- We feel you should expand what is there already, and not build so many new roads that cut through open space. This will save taxpayer money and preserve open space and wildlife habitat.
- We would like to see much more focus on reliable and easily accessible public transportation. If that existed, the pressure to build roads would decrease. We are adamantly opposed to building roads to attract development. Please consider reading this book: "Better, Not Bigger". Here's a description: "Contrary to accepted wisdom, rapid urban growth can leave communities permanently scarred, deeply in debt, with unaffordable housing, a lost sense of community, and sacrificed environmental quality. In Better NOT Bigger, Eben Fodor explodes the fundamental myth that growth is good for us and that more development will bring in more tax money, add jobs, lower housing costs, and reduce property taxes." It also has good ideas that could be implemented in CYMPO plans.
- There are numerous people concerned about the future of non-fragmented natural space, conservation of native grasslands and the preservation of indigenous wildlife who would be willing to contribute on their behalf. Please consider our input and let us participate in the process of saving the environment we love.
- I was unable to open the specific plans on your website. Why? Because I have a Mac? So all I can do is give a general comment that I hope will be given consideration. Habitat fragmentation is a significant problem with any expansion of road systems. We can and should include wildlife corridors with underpasses or overpasses for species that need to migrate between critical habitats as well as fencing that will reduce animals from being hit on our highways, both for the protection of wildlife and reducing accidents involving wildlife and endanger people. I also would like consideration given for significant trees and natural features whenever possible. While I understand the importance of cost effectiveness and safety as being a priority, I have lived and worked in other countries that value the natural landscape as a priority that warrants consideration.
- I know I missed the deadline by a day, hopefully, you will still consider my comments. I am pleasantly surprised to see that the proposed "Northern Connector" is proposed on Road 2 South. At one time, it was discussed to be Center Street, which, in my opinion, is not good, as it comes out right at Chino Valley High School. So I am writing to support the proposed Road 2 as the possible cut through. Thank You.

Appendix A: Written Comments

CYMPO
197 Commence Centeo Císle
Suite है
Qreacatt, AK. 8630)

$$
10 / 6 / 14
$$

This is regarding traffia around Prescate area. We meed the for lone SundogConnector fist to relieve the traffie on 69 . Lue coned have 2 way into Qreceatt on oner to the Crosaing orete. on harth Wielow sed from Qrescotovalley.
hert akoned he 69 with Jlanes on each ride from 169 on into Vrescote. settes farcemergency. rehicles and traffic.
thanh now. Faty Sondess

Central Yavapai Metropolitan Planning Organization
 Regional Transportation Plan Update 2040
 Public Meeting 2 | Comment Form
 September 29, 2014

Name: Mike Willett

Email Address: Mike.willett@yavapai.us

1. Do you have any comments on the 2040 Draft Regional Network recommendations?

On the map of the 2040 network show the corridors that were pushed out into the future as a dashed line for future study. Call them "future corridors" such as the remainder of Great Western, the Chino Valley Extension and the Fain to SR169 Connector if there is consensus from the CYMPO member agencies to show this.
2. Do you have any comments on the 2025 Draft Regional Network recommendations?

The map or the text of the report needs to be clear that the Robert Road Interchange is not the only SR89A interchange recommended to be constructed or improved by 2025. For example widening Glassford Hill Road to 6 lanes may be needed but the Glassford Hill Interchange may need to be improved to be able to get the 6 lanes of traffic on and off of SR89A. The 2025 recommendations need to include a recommendation to do further study along SR89A from SR89 to the new Robert Road Interchange to determine the priority of improvements based on the growth and traffic projections.
3. Do you think any other important information should be included in the Plan?
4. Which roadway in the Plan do you feel is the most important improvement?

SR89A shows the most need for improvements based on the projected increase in employment and population?
5. Do you have any other comments?

It is not appropriate to remove a corridor from the study based on an comment from any individual who thinks that a corridor like the Sundog Connector be withdrawn solely based on their desire to see it be kept as open space or wildlife habitat. Any corridor planned on private land cannot be designated as open space or wildlife habitat without the consent of the private landowner or some requirement placed on a developer by a governmental entity during the land development approval process. Furthermore if the corridors are not properly planned the private landowner/developer will most likely provide some kind of circulation system for the developed land and it be will much worse to "daisy chain" pieces of roadway together for traffic circulation than it would be to properly plan the corridor and its connection to our arterial roadways. If proponents of wildlife habitat and open space want to eliminate roadways on private land then they need to either work though the jurisdiction with the authority to approve the land development or purchase the land.

Please submit your comments no later than Friday, October 10, 2014. Comments can be submitted by:
Mail: CYMPO RTP
Email: Christopher.Bridges@yavapai.us
c/o CYMPO
1971 Commerce Center Circle
Suite E
Prescott, AZ 86301

Theng ê. inc maind
Pe. 1300 Cl 38io
Chind Valley, 景. 86323
Qet. 11, 2014
C. M. H. O O
/elsi conmence curche Swite 8 .
prenertt. Ay. 86301
Dear Hins:
I'm writing Concerning the artible in the chisw Valley Teview published loct 8, 2014. aboot the possibality of a conmestor noad prom two South. Heighevay ligtity mike over to in this ancos, as this present roake meen tewrite to bary the heast. 4 just thope * pray it is ternebter to say thes latew. Ht is lonq verdere.

Sincurly
万pary ci. mexains

How Did the Meadow Vole Cross the Road?

Designing travel routes for wildlife on Highway 93

Some fifteen miles south of Missoula, Montana, on an October morning as cold and clear as a mountain stream, a biologist named Pat Basting crouched in the brittle grass of a roadside ditch to show me one of the strangest pieces of infrastructure l'd ever seen.

I'd gone for a drive down US Highway 93 to see how Basting's agency, the Montana Department of Transportation, was making the Bitterroot Valley safer not only for drivers, but for non-human residents. In the ditch below the highway, Basting, a slim man with a drooping fu manchu mustache, guided me to a metal culvert, four feet in diameter, that ran beneath the road. A miniature catwalk, like the scaled-down set of an action movie's climax, hung on wire loops from the roof of the culvert and ran off into the cylinder's dark interior. Basting's blue eyes were
alight behind his glasses. "This is really exciting," he said, his raspy voice almost reverent. The odd steel contraption, he told me, was called animal shelving - a type of wildlife crossing.

I tried to contain my surprise. Perhaps you've seen photographs of wildlife crossings Amazing Animal Bridges Around the World - graceful bridges that swoop over highways in countries like Canada, Germany, and the Netherlands to convey animals from one side of a well-trafficked road to the other.

A couple years ago the internet became briefly obsessed with wildlife bridges, and it's not hard to understand why: Seen from above, they're gorgeous, almost fanciful, a slash of incongruous greenery slicing through the concrete scar of the highway. They seem more likely to have been built by elves than by humans. The steel catwalk below US 93 bore little resemblance to those graceful parabolas. But as Basting explained, it was just as important. For small, secretive mammals, the dark tunnels of drainage culverts are vital conduits that allow mice, skunks, and porcupines to cross between islands of habitat without having to play Frogger through oncoming traffic. The problem is that culverts are expressly designed to channel water off the surface of roadways - which means that during the year's wettest months, the tunnels are flooded. "When the groundwater comes up, just a few inches is enough to stop a lot of animals," said Basting.

Hence the catwalk, which allows small species to cross the culvert during rainy season while remaining dry. First built in 2001, this crossing, and several others like it, has helped more than 15 species, from raccoons to weasels, safely traverse Highway 93. "We even got a picture of a turtle," Basting told me-a surprise, since a cold-blooded reptile shouldn't have triggered the heat-activated camera inside the culvert. "The only thing we can think is that the sun heated his shell up enough for him to be detected."

Though the Bitterroot Valley's smallest critters are the most obvious beneficiaries, this small metal runway isn't just a local curiosity - it's another salvo in a decades-long battle to make our highway infrastructure safer for wildlife. It's one answer, too, to the ongoing question of who animal crossings should really be for - the wildlife that use them, or the humans that build them.

As Basting spoke, a steady river of cars and big rigs roared south down Highway 93 , the 1500 -mile-long road that runs straight as a spine from British Columbia to Arizona. Sudden curves and heavy vacation traffic make Highway 93 one of the most dangerous roads in Montana; from 2007 to 2011, 69 motorists died on a single stretch along the shores of Flathead Lake. In the 1990's, one popular Treasure State bumper sticker read, "Pray for me, I drive Highway 93."

Another hazard: Large mammals. Almost nowhere is that threat more prevalent than in Montana, the state with the third-highest rate of deer crashes in the country. And the problem extends far beyond the state: A car slams into a deer every 26 seconds nationwide, and collisions kill some 200 drivers a year.

Those crashes aren't just dangerous, they're enormously expensive. According to a 2009 study by Marcel Huijser, research ecologist at Montana State University's Western Transportation Institute, the average deer collision costs society around $\$ 6,600$ in vehicle damage and human injury. (Elk collisions, also frequent on Highway 93, cost more than \$17,000 apiece, and moose almost $\$ 31,000$.) By averting those hefty damages, Huijser says, wildlife crossings on many accident-prone stretches of North American highways would easily pay for their own construction. "We could keep ourselves busy for a long time mitigating road sections where it's beneficial not only for safety, but to our wallets."

But while roadkill-preventing projects have undeniable benefits - an underpass beneath Idaho's Highway 21, for instance, has eliminated deer strikes - they come with a caveat. Most American wildlife crossings, says Huijser, are aimed at the large, common ungulates that pose the greatest threat to property and
safety - rather than rare or small creatures that don't typically endanger drivers. Why is that a problem? While some species happily use underpasses designed for deer, others are reluctant: Pronghorn and grizzly bears, for instance, prefer bridges (which tend to be more expensive to build).
In other words, wildlife crossings tend to provide the most help to the most common creatures - a strategy that makes plenty of sense if your primary goal is to prevent drivers from crashing into white-tailed deer, but less if you're trying to conserve endangered species. "If you took a conservation perspective," Huijser told me recently, "you'd design structures of different type, dimensions and location."

The bias toward human safety especially harms the untold millions of diminutive animals that get pancaked each year with scarcely more than a gentle thump. There are exceptions, of course - salamander tunnels in Massachusetts, turtle crossings in Florida - but
 for the most part, transportation departments don't sweat the small stuff. "We don't see nearly enough mitigation for amphibians and small mammals," says Rob Ament, road ecology program manager at the Western Transportation Institute. "There's a lot more we could be doing to help those species out."

In 2000, Pat Basting's agency, the Montana Department of Transportation, sought to widen Highway 93 from two lanes to four throughout the Bitterroot Valley, a well-populated swath of fertile land wedged between the Bitterroot Range and the Sapphire Mountains. Doubling the width of the highway was certain to cause more roadkill in an area that already suffered from plenty of it; to address the problem, MDOT created a citizen advisory group to help choose wildlife crossing locations throughout the valley. The public had little trouble identifying sites for ungulate underpasses, but they had another, more difficult demand: What could the agency do for small mammals?

Basting placed a call to Kerry Foresman, a bushy-bearded field ecologist at the University of Montana. Biologists at MDOT had come up with a crazy idea -
shelves within culverts that would allow small critters to cross beneath the highway during the rainy season - and they wanted to know whether the concept would work. Foresman wasn't sure. "We had no idea whether even a single animal would use these things," he recalls.

To answer the question, Foresman crawled into the depths of three culverts outfitted with shelving and installed heat-activated cameras. Over the next three years, the devices captured 4,500 pictures - including grainy, security cameraquality images of raccoons, skunks, weasels, and a dozen resourceful housecats that used the shelves during their nocturnal hunting expeditions.

On first blush, then, the catwalks seemed a success. But still photographs could only tell Foresman so much. He needed to know not only whether animals used the shelves, but also how comfortable they felt on the metal runways. Back into the tunnel he crawled, this time to implant video cameras. When he watched the footage, a design flaw became apparent: Small mammals, like mice, struggled to walk across the inch-wide holes in the metal mesh floor. "They were placing their feet very carefully, like a person walking on railroad ties," Foresman says. He went back to Roscoe Steel, the company that had designed the structures, and chose a tighter steel grid, one that could support tiny feet.

Yet he wasn't done tinkering. Oddly, during the study's first year, Foresman hadn't collected any picture of the meadow vole, a nondescript, brown-furred rodent that's lighter than a pack of playing cards. Meadow voles were more common than any other mammal in the wetlands of the Bitterroot Valley - when it comes to reproduction, they're the most prolific mammal in the world - yet not a single vole had crossed the catwalk. Clearly, the shelves were failing for one critical species. The question was how to make them better.

To solve the puzzle, Foresman turned his attention to vole behavior. "These guys are the prey base for hawks, owls, weasels - there's lots of predation on them," he says. "So voles have evolved a behavior where they simply avoid going out in the open." The rodents, he realized, survive by spending their entire lives concealed beneath dense mats of grasses and cattails. To such a secretiveand delectable - creature, scurrying across the uncovered surface of a shelf must have seemed tantamount to suicide.

What does an ecologist do when he's cracked a riddle of animal behavior? He goes to Home Depot. There, Foresman bought 180 feet of plastic gutter pipe, taped it all together, and headed, once more, into the culvert, to hang his jerryrigged vole tube beneath
 the shelves.
To test the apparatus, he dusted a plate with soot and surrounded it with sticky white paper, ensuring that any animal passing through the tube would leave behind telltale black paw prints - "exquisite tracks," as Foresman puts it. He cut a small door in the side of the gutter to observe the results. Then he left.

The next morning, Foresman hurried back to the culvert, his mind buzzing with scientific curiosity. He shuffled into the darkness, found the door he'd sliced into the gutter, and peered inside. There, pressed in black soot onto white paper like minuscule fingerprints, were the exquisite tracks left behind by the half-inch-long feet of Microtus pennsylvanicus - the meadow vole.

Further down Highway 93, Pat Basting pulled over yet again, this time alongside a deer underpass called Dawn's Crossing, named for a congressional staffer who'd gotten $\$ 1.5$ million allocated for the project. Tons of fill, which had once created a steep wall over which wildlife had to scramble, had been scooped away from beneath the roadbed, essentially turning the highway into a bridge over a 100-foot-wide animal path.
"There used to be a huge pile of bones right down the road," Basting said as we clambered into Dawn's Crossing. The underpass was cool and dark; traffic Dopplered faintly overhead. The structure had been designed for white-tailed deer, and deer were primarily what used it - nearly 3,000 times in 2012 alone. In the soft dirt floor of the underpass, though, amidst the jumble of cloven white-tail
tracks, Basting pointed out the prints of other species: Raccoons, skunks, porcupines. He'd seen bobcat tracks down here, too. Clearly, designing for deer didn't entirely exclude small critters (though I couldn't help but notice that a meadow vole would have been loath to cross the bare dirt floor).

Back in 2003, in an article in Audubon Magazine, a U.S. Forest Service biologist named Sandra Jacobson called for "something akin to the interstate highway system - a highway system for critters." Along U.S. 93 in Montana, perhaps more than anywhere in the country, that alternative highway system is close to fruition. The 40 miles south of Missoula boast 31 total crossings; to the north, another 41 structures, including a 26-foot-high overpass, help animals traverse the highway as it bisects the Flathead Indian Reservation. Basting has shared information with a dozen states and countries including France, China, and Mongolia, and for good reason: "We have here what a lot of folks say is the most mitigated stretch of highway in the country," he told me.

Like any highway crossing worth its price tag, the Highway 93 structures have helped prevent roadkill; Marcel Huijser's research suggests that crossings north of Missoula have cut collisions in half. But they've succeeded, too, through their diversity - evidenced by the remarkable fact that an overpass intended for an 800-pound grizzly bear exists in the same network as a gutter designed for a 2ounce meadow vole.

Making highway crossings safe for the tiniest animals isn't expensive, or even particularly challenging. It just requires a touch of consideration. Huijser and colleagues were able to nearly double the number of mice, voles, chipmunks and other small mammals that used underpasses simply by laying down some brush that the creatures can use as cover - a technique that actually saves transportation departments money. "When you widen a road, there's all sorts of vegetation removed," he says. "They can haul it away, they can bury it onsite, or they can pile it by underpasses - and it's cheaper to leave it onsite than to do any of the destructive methods."

Kerry Foresman, too, is attempting to take small animal crossings mainstream. A year after demonstrating the effectiveness of his animal shelving, Kerry Foresman spoke at the International Conference on Ecology and Transportation, an annual jamboree for scientists who study roads and wildlife. After his talk, he was surrounded by other researchers who wanted to use his design; the warm reception persuaded him to patent his invention and start his own company, Critter-Crossing Technology. (These days, the vole tubes are built into the frame of the structure.) Now he's developing shelves around North America, from crossings meant for fishers in Yosemite to the endangered Preble's jumping mouse in Colorado, where roads are being rebuilt after catastrophic flooding last fall. (Appropriately, Pat Basting, now working for the Federal Emergency Management Agency in Denver, is helping to spearhead the latter project.)
"The cost of the shelves is minimal - they're a few thousand dollars in a hundred-
million-dollar highway project," Foresman told me. "We're trying to make this routine."

All Illustrations by Summer OrtizThis story was supported by the Solutions Journalism Network.

Joyce Mack in
1235 West Merrill Drive
Prescott. Az 86305
Comment =
1- Do think we need Deep Wheel Ranch Road - Not necessary.
2-Need a plan for the pong horn.
Need to provide cosslingu for the pronghorn.

Per phone call
Oct 4 . apis 1:15 pm

$\begin{array}{llllllllllll}\mathrm{E} & \mathrm{S} & \mathrm{P} & \mathrm{I} & \mathrm{R} & \mathrm{I} & \mathrm{T} & \mathrm{U} & \mathrm{L} & \mathrm{O} & \mathrm{C} & \mathrm{I}\end{array}$
 The Spirit of the Place

14 October 2014

Christopher Bridges
Central Yavapai Metropolitan Planning Organization
1971 Commerce Center Circle
Suite E
Prescott AZ 86301

RE: Regional Transportation Plan 2014 Update

Mr. Bridges

Thank you and AECOM for your presentation on the Regional Transportation Plan 2014 Update on the $29^{\text {th }}$ of September, 2014.
As a result of questions generated by the Town of Prescott's General Plan update, ADOT's bypass study and the Regional Transportation Plan, we have been hired by the Fain Family of Prescott Valley to assist them with the long term planning of their property. Your study, projections and outlook for the Prescott-Prescott Valley-Chino Valley area are very helpful in these early stages of our work.

One of the early outcomes of our planning work is recognition of the importance of the existing regional employment center near the intersection of Highway 69 and Fain Road. As you likely already know, over 50 employers have chosen this district for their operations already, including Lockheed Martin, UPS, Ace Hardware, Sunstate Equipment, and Hensley \& Co. This location with convenient truck access to I-17 and I-40, the adjacent regional natural gas transmission line, adjacent executive housing in the Prescott Golf \& Country Club, and the easy access to the workers of Prescott Valley, is positioned to grow dramatically over the next several decades. Along Fain Road several large tracts of land (640+ acres) are relatively flat and easily developable, dramatically improving the development potential for this area. ADOT has been studying bypass routes through the area to eventually connect I-40 to I-17, the southernmost alignment of the study would further enhance the long-term development of this employment district. This roadway would also provide a short secondary route for traffic along Highway 69 between Fain Road and Highway 169 where no other secondary route currently exists.

To enhance the development of this vital regional economic engine, we request your assistance. While we know that the development of such a roadway is not likely in the 2040 horizon with the current employment and residential projections, we request the inclusion of a graphic showing the long term transportation plans in your report. If such a graphic included the proposed bypass alignment shown in orange on the attached "Prescott Valley Employment Core" graphic it would be very helpful in our efforts to attract additional employers to the region.

Thank you for your work to improve the quality of the Central Yavapai Metropolitan Area and your consideration of our request.
Sincerely,

[^0]

| W | W | W | E | S | P | I | R | I | T | U | L | 0 | C | I | | C | 0 | M |
| :--- |
| P | H | O | N | E | | 4 | 8 | 0 | 4 | 8 | 1 | | 9 | 1 | 0 | 0 | | |
| F | A | X | | | | 4 | 8 | 0 | | 4 | 8 | 1 | | 9 | 1 | 0 | 1 | |

Appendix B: Sign In Sheets

Central Yavapai Metropolitan Planning Organization
Regional Transportation Plan Update 2040 I Mon., Sept. 29, 2014 1 p.m. to 3 p.m. I Prescott Council Chambers

NAME (please print)	ADDRESS	EMAIL
Gkaig Li Jrown	13240 N. Inod Hawk VA Prescolt A2 86305	WEB. BoS distaict 4 o Yavalain US
Berry No(Cen 11 th	OOD 463 O 16	mayor,Nolan@dhAz.gov
KEN JANECEL	2764 GOONE CT. PRES COTT 86305	KFJANECERQ CABLEONE,NET
Ken M Ino	2,560 M CSX OAK CT. 86305	kmin 9455(s) AOL com
GAm Vorob	1638 white Onk 4 . 86305	Suvordb e jaheo.con
BOID RORERTSON	7501 E CIVIC CIR. P.V.	Drobentson@pvaz.net
Richard Schlelcher	7501 E Civic $C_{\text {N P P }}$	rschleicher@ puaz,net
Mikeurllett	-	-
Trever Dameer	6625 N SCOTSOAE RD 85250	Trane ESPIRirlloci.com
Noel Camprell	146 N. MT. NERNOW 86301	NOTE6/@gANOO.com
Dava Hoffman	310 Unmenst 86303	davah@davacivil.com
HENRY HASH	PRESCOTT PUBLIC WORKS	HENRYIHASHEPRESCOT-AZGOV
Ian Mattingly	Pascott FW	ias.mattingly O presuatt-ar.jou
Cammy Prántice	75 Cl E. Civie circle pr	l prenticee pusz net
VENNY BIXBY	101 N. First Are, Phx	junnifer. bix by © jacobs.com

THANK YOU
for participating!

Regional Transportation Plan Update 2040 I Mon., Sept. 29, 2014 5:30 p.m. to 7:30 p.m. I Prescott Council Chambers

NAME (please print)	ADDRESS	EMAIL
Jane Anderson	Po Box 367 Poulden A2 86334	jane@northlink.com,
Allen Tury	3303 N. castle Dr., Prescott Valley, A2 86314	allenturya gmailicom
dritants		edhuntue O.H.Az, for
Chris + leslie Hon	1880 Cogoterd Prescolt 86303	priority p cableone. net
Byron Jospons	ynuren Connt PubsL wank	aymen pauperso yauparius.
Mike wrued	YANCO	
Lyle Christensen	3385 N. Pleasant Viea Dr. Prescotvalley	
upons Sheats		qsheato eaol. com
Thdmas Slabact	715 E. Goodwin St, Prescodt \$6303	Prescothid@peoplepcicm
Ias Mattiog	Presut PL	ion.mattijy - prsurt-ar.jor
Many mallom		
JDEREENBERE	Prescott	JDEREENEAIA@ YAHOO.COM

SIGN IN Central Yavapai Metropolitan Planning Organization

Regional Transportation Plan Update 2040 I Mon., Sept. 29, 2014 5:30 p.m. to 7:30 p.m. I Prescott Council Chambers

NAME (please print)	ADDRESS	EMAIL
Gearge Andersen BOND ROBERBON	25745 N. Emery Dr. Paulden A286334	Suppart@andorscugarge.cam brobertson@puaz.net
Aumer futh (LWrCyC)	3. sent Dive C7 Trescout, As 86zel	junarutk@conmspeud.net

Appendix C: Meeting Handout

Central Yavapai Metropolitan Planning Organization Regional Transportation Plan Update 2040

FACT SHEET | September 2014

What is the Regional Transportation Plan (RTP)?

The CYMPO is completing a new long-range transportation plan for the region. The RTP is a 25 -year plan that will provide a framework for transportation investments in the CYMPO region by identifying projects that could be developed with federal, state, and local funding through 2040.

Don't we already have an RTP?

The quad-city MPO adopted the 2030 RTP for the greater Prescott area in 2006. This study was prepared during an economic boom, and the forecasts have since been labelled inaccurate because of the Great Recession that began in 2007-2008. In response, the CYMPO updated its information in the 2011 RTP Update, completed in June 2012. The updated study used 2000 and 2010 U.S. Census data and resulted in much lower growth estimates for 2030.

These reduced population and employment forecasts were used with the 2006 network to evaluate future travel demands on existing and proposed roadways. As a result, several proposed roadway corridors will no longer be needed in the next 25 years. Meanwhile, other changes in travel demand and transportation needs have occurred and need to be reevaluated to make the smartest choices in future transportation investments.

How did population and employment forecasts lead us to an updated transportation plan?
The forecasting process of the RTP Update 2040 was twofold:

1. Use the latest 2010 Census data to extend the existing 2030 travel forecasts ten years to 2040.
2. Use the same data and forecasts to develop interim 2025 travel forecasts.

The future travel demand estimates were then overlaid on a "No-Build" traffic network to determine if only funded projects in the current pipeline are built, what transportation needs and deficiencies will remain in 2025? In 2040? With assistance from knowledgeable central Yavapai area stakeholders, the technical team assembled and then evaluated competing network improvement alternatives. Each alternative solution was designed to fit together seamlessly, both geographically and over the lifetime of the plan. The recommended 2040 network, presented at the second public meeting, includes the following elements, as shown in "Recommended 2040 Network and Facilities:"

- Widen portions of major regional highways, including SR 89A, SR 69, SR 89, and SR 169
- Widen portions of regional arterials (for example, Glassford Hill Road and Old Black Canyon Highway) to improve community connectivity
- Add new major arterials (for example, Sundog Connector, Northern Connector, Stoneridge Drive) to improve regional connectivity
- Add new facilities to provide improved access to air travel (Airport Boulevard and Airport Loop Road)
- Add new facilities to provide access to growing residential and commercial centers (for example, Granite Dells Parkway and Phase 1 of Great Western Extension)

Recommended 2040 Network and Facilities

For more information, contact:

Chris Bridges
CYMPO Administrator
928-442-5730
christopher.bridges@yavapai.us
kate.bondy@aecom.com

Number	Comment Date	Name	Comment
${ }^{34}$	4/4/2015	Diane Bright	
35	4/4/2015	Laura Roden	1 Ispport widdific coridors and highway over and undeppases.
36	4/4/2015	Stere Will	Please include willifife corridors and underpasses overpasses for highways 89 and 69 in the 2040 Regional Transportation Plan. The nighways 89 and 69 nerticur cannot survive in small segmented grazing areas when they cannot cross highways.
${ }^{37}$	4/4/2015	Frester	Quality of life is one of the prime reasons most of us choose to ive in Yavapai County. Greatly contributingto that quality of life is the presence of wildifife around us. Fragmentation of wild life habitat by development and road construction is making it increasingly difficult for many wild creatures, including pronghorn, to survive. The 2040 Regional Transportation plan should include measures to mitigate this fragmentation. Specifically the Plan should: Include widlifife corridors and widd life crossing measures (overpasses, underpasses etc.) in areas used by pronghorn and other species to prevent loss of their habitat connectivity. Give consideration for wildifie connectivity on all right-of-way fencing applications. Further, all land-use planners, including municipalities, developers and ADOT, should utilize information collected by the Arizona Game \& Fish Dept. to determine the best design and placement of mitigation features to promote habitat connectivity. Widlifife experts should be consulted early in the planning process to ensure intelligent measures are adopted for the preservation of our native species.
38 39	4/4/2015	Marge Wilkins	
	4/4/2015	Neil	Concerning widlifife habitat connectivity, IIupport permanent widlifife corridors and wildifife crossing measures (overpasses, underpasses etc.) in areas used by Pronghorrn and other species. Studies by the Nature Conservancy and others show that pronghorrn travel widely and are unwiling to cross highways. Overpasses in particular, are needed to llow pronghorn free emovement.
${ }_{4}$	4/4/2015	Chery Williams	I support corridor connectivity and wildlife under/over passes on our highways. safety as well. big picture we call the future, educating the citizens (including our young ones!) to create a positive, long term plan for all who share our environment.
42	4/4/2015	ppy O	Ia concerned that some of the changes for central Arizona potentially could harm our native wildifife through habitat fragmentation due to oincreased and expanded roads. Ilive in the Granite Dells and am extremely interested in preserving the eemaning widilife here. Please note my "vote" to support wildifí corridor comnectivity and highway vere- and under-passes
43 44	4/4/20	Steve Finu	 process. This will align future crossings with the preservation of future open spaces for wildlife movement." Wild life is part of the essence of this count and needs to be preserved. Drivers don't want to hit animals. Please implement crossing structures and related meaures! Drivers also don't want to hit bikes and pedestrians, so please highlight the support of traffic separation (e g, bike lanes with adequate segregration
45	4/3/2015	Jane Morgello	I support wildlife corridors and highway underpasses. It's very important to me and many others that wildlife is considered a priority during talks regarding highway expansion. I'm very concerned about the impact of highway expansion on our wildlife. Please do all that you can to help.
	3/2015	Roy Smith	Without wildlife corridors certain migratory and wandering species will eventually die out. We have an obligation to our heritage, our children their children and grandchildren to preserve what little we have left. If we can afford new highways then surely we can afford to provide safe corridors for species like the Pronghorn.
47	4/3/2015	Udelle Stuckey	Isupport widlifie corridors and highway underpasses
	4/3/2015	Karen Goldscin	 herds, we can at least try.
49	4/3/2015	Brena Smith	pleasing and remind drivers that wildlife is important, which the majority of people agree with and support.
50	4/3/2015	Gerald Stricklin	
51	4/3/2015	Janet Grosman	
52	4/3/2015	Tery Stickling	Why can't we provide highway under passes or over passes for our wildifife here in Yavapai County. They have absolutely no way to contend with our man-made structures. Why are there no mandatory measures in these Highway Bills that include the needs of the natural world and the a animals that are dependent upon it. To our own demise, we race.
53	2015	Steve and Kay Van Slyce	
54	4/3/2015	Katherine Gr	1 Isppoot widlific coriders and highway under - and overpases.
	$41 / 32015$	vicki Irvine	
${ }^{56}$	$4 / 3 / 32015$	Richard Yetman	
${ }_{58}^{57}$	${ }_{4}^{4 / 3 / 320025}$	${ }^{\text {Patinick Twomer }}$	
59	4/2/2015	Lynette Trite	The changes for central A Arizona potentially could harm our native widlifí through habitat fragmentation due to increased and expanded roads. Highways 89 and 69 are scheduled to become six lanes, which significantly will impact our local wildifife and riparian areas. The changes for central Arizona potentially could harm our native wildifife through habitat fragmentation due to increased and expanded roads.
	$412 / 12015$	Dan Garcia dela Cadena	
61	4/2/2015	Judy Coftman	
62	4/2/2015	Thomas L.Slaback	 needs to be put in place to either prohibit animal passage, thereby directing them to safe crossings, or to allow free movement through the area. Through positive reinforcement, wildlife can be taught to use these crossings.
	2015	Dean Goehring/Prescott College Student Chapter of The Wildlife Society	 corridors for the safety of an expanding area, the aesthetics, and course the intrinsic good of preserving the Southwest's wild side.
64	4/2/2015	Connie Foss	Supportwidilife corridor conneetivity ynd over and under pases.
65	41/2015	Debra Campell Howard	Isuppor widirie eorritor comnectivy and highway over-and under-passes.
66	41/2015	Mark Ricgner	wildlife is a local treasure and it is important for all of us to do what we can to preserve their remaining wild populations.

mber	Comment Date	Name	Comment
67	1/2015	rison	ITnow growth and new roads are inevitable, but hope care will be taken to maintain wild life corridor connectivity and highway vere and under passes. I have seen much of the Pronghorn areas loose out to development in the 23 years 1 have been here and all there is left of the Pronghorn in those areas are street and sub
	41/2015	Pamela Mills Knusen	Iam extremely concerned about the proposed expansions of Highways 69 and 89 to 6 lanes. While needed for traffic, it would greatly impact and 89 to 6 lanes. While needed for the migratory pathways of local wildife. Any decision to expand these highways must take into account the findings of the Arizona Game and Fish Department in intelligent, scientific-based corridors and highway mitigation. With any expansion there must be wildife corridor connectivity and highway over- and under-passes. We have an obligation to protect these animals and the ease and speed of human traffic is no excuse to allow the slaughter of wildife.
69	3/31/2015	Thomas L.Fleis	
70	3/31/2015	Dennisse A Espara	My name is Dennisse and lam currently yttending yavapai community college. My teacher Joanne oellers gave us really important about the fragmentation currently ffecting the Pronghorn. I am deeply concerned and would ike to offer my support and anything elsel can do. Please let me know how I can help, I would like to be closely engaged in this wildlife protection movement.
1	3/31/2015	gary worob Community Forest T Tust	recreational options exist. In looking at the area, wildlife corridors as interconnecting open space also provide opportunities for multi-modal transportation options.
${ }^{72}$	3/3012015	Imina0708	
${ }^{73}$	$3 / 292 / 2015$ $3 / 29 / 2015$		
	3/29/2015	pathunt	is support wildifife corridor conneetivity and dighway verer-and under passes.
76	3/29/2015	jon navaro	
77	3/28/2015	Jan MAUCK	Isee my beautifu pronghorns everyday as Idrive into Prescott. They and other wildifife are one of the reasons we moved to this area. Please don't do anything that will further endanger them any more. Their welfare should be a part of any regional major transportation plan. Incorporate over/ under passes for them in any future plans
78	3/28/2015	Dan and Karen Bunken	We support widilife corridor connetivity and highway ver- and under-p.pseses for the Yavapai County, Pescott and P Pescott Valley area.
19	3/28/2015	Dianc Young	In consideration of the longterer hiogway expansion program, please be sure to consider the need for widldife corridor comnectivty incuding highway vere and under passes for the widlilife.
80	12015	Dust	
81	${ }^{3 / 2772015}$	Batara Weingard	Iam moncerened bout the migratory pathway sf our I Ical w widlife and support widilife corridor c coneetivity and highway vererand under passes.
82	3/25/2015	Denise Nickaus	
	3/26/2015	Carl brown	I think it is important that the Plan include Wildlife Corridors and overpasses. Part of what I love about our area is our environment It is important that in the long run we allow such corridors in order to maintain the wildlife as our communities continue grow in human numbers. A balance of human and wildlife needs should be maintained!!
84	3/26/2015	Chrisine Broiles	In regards to the 2040 Regional Transporation Plan, I want toexpress my support, and beliefe, in widlifíe coritiors and overeasses.
85	3/25/2015	Susa	
	3/25/2015	Dr. Laync Longetlow	 Ve must not tose those qualities that define our uniqueness.
87	3/25/2015	Denise Nicklaus	Isupport widilife coridiors and overpasses.
88	3/25/2015	Sharo Seymur	
89	3/25/2015	Gicam J Gooding	1 Ispport widilifif corridors and overpasses
90	3/25/2015	Chelly Herren	1 supporn wilduific corridors and overpasses in Yavapii County
${ }_{91}^{92}$	${ }^{3 / 255 / 2015}$	$\frac{\text { scordoval13 }}{\text { Cheab caleonenet }}$	
93	3/24/2015	Laurel Freman	underpasses to allow these
9	3/24/2015	Mevin and Chery Hill	We feel strongly that we need to support wildlife corridor connectivity and species-appropriate highway overpasses and underpasses. We the needs of wildlife should be considered in any future transportation plan. Thank you for your consideration in this matter.
95	3/24/2015	Gerry Garvey	Isupport widldife corridors and overpasses please support this effort tos save our widl life.
96	3/24/2015	david m, solmon	
	3/24/2015	Ama Fallon	Ispport highway bridges for widlife
98	3/24/2015	Lisa Zander	
99	3/23/2015	Joy Donery	Please know that me and my family are in totata support of making sure our widilife is taken care of during the construction of the proposed highwass. We must speal
100	3/23/2015	Dave Irine	 highway!
101	3/23/2015	Donis cellarius	isupport widlifie corrido cooneetivity and specie sppropriate highway verepasses or underpasses.
102	3/23/2015	Felipe Guerrero	
103	3/23/2015	Stzanne Yoder	
104	3/23/2015	Cymhia Jones	
105	3/22/2015	Joan Oukes	I have been a Yavapai country resident since 1971. My deceased husband and I moved here because we loved the beauty of the surrounding natural world-the diversity of ecosystem all with in close proximity. Idefinitely support whatever ensues. I support widlifif corridors and overpasses.
106	3/21/2015	Dr.J.L L Preston	

Central Yavapai Metropolitan Planning Organization

Regional Transportation Plan Update 2040

Transportation Network Alternatives Development and Evaluation Revised for Comments

October 2014
Prepared by:
AECOM

Central Yavapai Metropolitan Planning Organization Transportation Plan Update 2040

Transportation Network Alternatives Development and Evaluation

October 2014

Member Agencies:
City of Prescott
Town of Chino Valley Town of Dewey-Humboldt
Town of Prescott Valley
Yavapai County

Table of Contents

1.0 Introduction 1
2.0 Transportation Network Alternatives 2
2.1 Yavapai County Plan 3
2.2 City of Prescott Plan 3
2.3 Town of Prescott Valley Plan 4
2.4 Town of Chino Valley 4
2.5 Town of Dewey Humboldt 0
3.0 Description of Alternatives 1
3.1 Alternative 1 4
3.2 Alternative 2 7
3.3 Alternative 3 10
3.4 Alternative 4 13
4.0 Alternative Evaluation Process 16
4.1 Descriptions of Criteria 17
4.2 Alternative Analysis Results. 19
List of Figures
Figure 1 - CYM PO 2030 Regional Planned Transportation System 2
Figure 2 - Town of Prescott Valley General Plan 2025 Transportation System Map 5
Figure 3 - Alternative 1 Regional Network. 5
Figure 4 - Alternative 12040 Traffic Volumes and Levels-of-Service 6
Figure 5 - Alternative 2 Regional Network 8
Figure 6 - Alternative 22040 Traffic Volumes and Levels-of-Service 9
Figure 7 - Alternative 3 Regional Network. 11
Figure 8 - Alternative 32040 Traffic Volumes and Levels-of-Service 12
Figure 9 - Alternative 4 Regional Network 14
Figure 10 - Alternative 42040 Traffic Volumes and Levels-of-Service 15

List of Tables

Table 1 - Comprehensive List of Planned Projects ... 1
Table 2 - List of Projects Considered for 2040 with Inclusion Status in Each Alternative.......................... 3
Table 3 - Network Alternative Evaluation Criteria.. 16
Table 4 - Alternative Analysis Results ... 20

1.0 Introduction

This working paper presents the alternatives developed for the future transportation network in CYM PO, their evaluation criteria, and evaluation results. The results of the analysis of future conditions with the "No-Build" alternative (described in working paper \#6-Future Conditions) reveal that several areas of the network will suffer from congestion due to increasing traffic demand in the region. The alternatives selected for review and described herein were selected to improve the health of the transportation network and the mobility of CYM PO residents.

AㅡCOM

2.0 Transportation Network Alternatives

The goal of the transportation plan presented herein is to provide CYM PO and its member agencies a guide for programming transportation improvement projects that will most efficiently enhance the regional connectivity of the network and support the circulation goals identified by member agencies.

The 2006 CYM PO RTP presented the 2030 planned regional system depicted in Figure 1. This system includes widening several of the major state highways in the region, widening several more local routes, constructing new highways for improved connectivity, and at least one long-range study for new highway corridors.

Source: Yavapai County Comprehensive Plan (9/17/2012)
Figure 1-CYM PO 2030 Regional Planned Transportation System

ACOM

For each CYM PO member agency, a summary of transportation goals and description of future network improvement projects is provided.

2.1 Yavapai County Plan

The Yavapai County Comprehensive Plan (9/17/2012) identifies three major transportation element goals. These are: fully integrated coordination between land use planning and transportation planning, encouragement of multi-modal transportation opportunities (including transit), and ensured consistency between transportation and land use through a thorough review and understanding of land use zoning policy. In summary, Yavapai County transportation goals are centered on the cohesion of transportation and land use as well as the promotion of multi-modal options for users.

The Yavapai County Comprehensive Plan (9/17/2012) lists the following major planned regional projects in the Central Yavapai area.

- Great Western/Glassford Hill Extension, which will provide connectivity north of Prescott Valley and southeast of Chino Valley. The corridor alignment connects SR 89A at Great Western Road to SR 89 approximately one mile south of Outer Loop Road.
- I-17 to SR 169 connector, a continuation of the previously studied SR 169 to Fain Road connector. The new facility would provide a direct connection between I-17 and SR 89A and would alleviate future congestion on SR 69.
- SR 89 to be widened between Chino Valley and Prescott.
- Intersection improvements at the intersections of SR 89 and Road 4 North and SR 89 and Perkinsville Road.
- SR 89 between Road 5 South in Chino Valley and the Prescott Airport would be widened to four lanes.
- SR 69 construction as a six-lane access-controlled roadway, identified as a long-range project.
- Widening of I-17 to six lanes from Cordes Junction to SR 169 as a long-range project.

2.2 City of Prescott Plan

The Draft 2014 City of Prescott General Plan identifies transportation goals for each of three types of facilities separately: arterial streets, collector streets, and local streets. Goals for arterial roadways include providing adequate level of service (LOS) and options for alternative mode usage during peak hours. The goals for collector roadways include providing safe access to community amenities (such as schools and libraries), connecting neighborhoods to each other, and connecting neighborhoods to commercial centers. The goals for local streets include providing efficient access to emergency response vehicles, and enhancing the environment and livability of neighborhoods. The general plan also includes transportation goals revolving around enhanced transportation safety, efficient management of the existing system, and the increased integration of bike, pedestrian, transit, and air travel modes.
The Draft 2014 City of Prescott General Plan does not provide a detailed list of future transportation projects, instead referring to the plan developed in the CYM PO RTP.

2.3 Town of Prescott Valley Plan

The Town of Prescott Valley General Plan 2025 identifies a guiding principle for its circulation element that emphasizes traffic safety and efficiency, pedestrian safety, economic development, and alternative modes of travel. The plan also affirms a second guiding principle that establishes the need to administratively adopt transportation recommendations made by CYM PO. The general plan adopts goals for its circulation element to 1) encourage alternative modes of travel, including transit, 2) incorporate a comprehensive public trails system to increase connectivity to parks and other community amenities, 3) adopt a street improvement program that draws maximum capacity from existing infrastructure, 4) increase connectivity to the local airport in order to support air travel, and 5) adopt relevant transportation projects approved by CYM PO in the Prescott Valley plans.

The General Plan lists several improvement projects for the 2025 future build-out network. With the exception of roadways requiring the specified improvements, the Prescott Valley system was anticipated to operate at LOS E or better in 2025. The projects listed would improve the roadways through capacity augmentations, including (but not limited to) signal timing improvements, additional intersection lanes, auxiliary lanes, and intersection grade separations. The projects identified are listed below:

- SR 69, Sundog Ranch Road to Prescott East Highway
- Fain Road, SR 69 to southern terminus
- Lakeshore Drive, Navajo Drive to Badger Road
- Robert Road, Florentine Road to Lakeshore Drive
- Robert Road, SR 89 to Pronghorn Parkway

The General Plan (Figure 2) summarizes the anticipated 2025 transportation system.

2.4 Town of Chino Valley

The Town of Chino Valley General Plan 2013-2014 (Review Draft) establishes the objective to increase employment opportunities and establish community core areas without sacrificing the small-town, rural atmosphere. The plan provides one overarching goal for the transportation system and several supporting strategies. The circulation/transportation goal of the community is to encourage system improvements that incorporate alternative transportation modes. The town identifies six targeted strategies for achieving this goal. These are: 1) encouraging new connecting local roadways, 2) supporting regional goals of widening existing and planning for future major regional connectors, 3) promoting Yavapai Regional Transit Inc. (YRTI), 4) encouraging the use of all alternative transportation modes, including transit, paratransit, and non-motorized, 5) considering "green" practices when constructing new streets, and 6) adopting a five-year CIP.

The Draft General Plan identifies several projects for future development that aim to advance the community's circulation/transportation goal. These are projects that the City plans either to budget itself or promote in cooperation with other entities. The projects listed are as follows:

- Westside Road at Center Street alignment, Williamson Valley Road to Reed Road
- Road improvements for several local corridors, including Reed Road north to Road 2N, Center Street to SR 89, and others
- Eastside Loop Road Center Street to Peavine Trail to Road 4 South
- Planning for the installation of bus stop features, such as safe seating and shelters
- Complete an origin-destination study to determine non-motorized transportation needs

In addition to these roadway construction or planning projects, the Draft General Plan identifies specific strategies for regional cooperation and incorporation of "green" roadway construction practices in all new street construction.

2.5 Town of Dewey Humboldt

The Town of Dewey-Humboldt does not as yet have a general plan, but a Planning Assistance for Rural Areas (PARA) study that outlines the transportation needs of the community was completed in May, 2012. These identified needs include improvements to the current system (paving some unpaved roads, signal coordination, incorporation of ADA-compliant rehabilitation in the community core, and rehabilitation of failing pavements), access management along major regional routes for improved safety, federal reclassification of several roadway segments, and improved circulation through the addition of some local streets and at least one river crossing. (ADA =Americans with Disabilities Act.)

The PARA study identifies two regional improvement projects that could affect circulation in the DeweyHumboldt area: the addition of the Country Club Bypass road and the addition of a north-south roadway through the developments near the northeast corner of the SR 69 and SR 169 intersection (both projects would be in the Town of Prescott Valley but would have an effect on Dewey Humboldt). In the longrange time frame, the addition of a highway corridor ultimately connecting I-17 to Fain Road would affect conditions in the area as well. The study also identifies several small local street improvements that should be implemented to improve mobility and connectivity in the community. Several of the network improvement suggestions made in the study are recommended for further study and development by the town.

3.0 Description of Alternatives

Four alternative transportation networks for the 2040 horizon design year were developed by the Technical Advisory Committee (TAC). These alternatives were drawn from a list of planned projects in the CYM PO planning area, which was based in turn upon the 2011 RTP update, Yavapai County plans, and city and town CIPs and general plans, as described in Section 2. Each alternative represents a different combination of improvements to existing roadways and/or new facilities, assembled to evaluate the combined projects' effect on congestion in the region. Table 1 shows all improvement projects considered, their inclusion in previous planning documents, and the responsible jurisdictions.

Table 1 - Comprehensive List of Planned Projects

Project	Jurisdiction	Included in 2006 RTP	Included in 2011 RTP Update	Included in Additional Planning Documents
SR 89: Center St to Deep Well Ranch Rd	ADOT	Yes	Yes	-
Deep Well Ranch Road	Prescott	No	No	Yes
Airport Loop Road	Prescott	Yes	Yes	Yes
SR 69: SR 89 to SR 169	ADOT	Yes	Yes	Yes
SR 169: SR 69 to I-17	ADOT	Yes	Yes	-
SR 89A: SR 89 to Robert Rd	ADOT	Yes	Yes	Yes
SR 89A-Robert Road Traffic Interchange	ADOT/Prescott Valley	Yes	Yes	Yes
SR 89A: Fain Rd to M ilepost 329	ADOT	Yes	Yes	-
Fain Road to SR 169 Connector	ADOT	Yes	Yes	Yes
SR 169 to I-17 Connector	ADOT	No	Yes	Yes
Great Western Extension	ADOT	Yes	Yes	Yes
Chino Valley Extension	ADOT	Yes	Yes	Yes
Northern Connector	Yavapai County	Yes	Yes	Yes
I-17: Cordes Junction to SR 169	ADOT	Yes	Yes	-
Sundog Connector	Prescott	Yes	Yes	Yes
Glassford Hill Rd: SR 69 to SR 89A	Prescott Valley	Yes	Yes	Yes
Side Road Connector	Prescott	Yes	Yes	Yes
Outer Loop Rd: SR 89 to Williamson Valley Rd	Chino Valley	Yes	Yes	-
Glassford Hill Extension	Prescott Valley	Yes	Yes	Yes
Old Black Canyon Highway: Country Club Bypass to Stoneridge	Prescott Valley	Yes	Yes	-
Country Club Bypass	Prescott Valley	Yes	Yes	Yes

Project	Jurisdiction	Included in $\mathbf{2 0 0 6}$ RTP	Included in $\mathbf{2 0 1 1 ~ R T P ~}$ Update	Induded in Additional Planning Documents
Sante Fe Loop Rd	Prescott Valley	Yes	Yes	Yes
Stoneridge Drive	Prescott Valley	Yes	Yes	Yes
Granite Dells Pkwy: SR 89A to new Great Western	Prescott	Yes	Yes	Yes
Navajo Drive: SR 69 to Old Black Canyon	Prescott Valley	Yes	Yes	Yes
Superstition Drive Extension		No	No	Yes
SR 89: Milepost 314 to SR 89A	ADOT	Yes	No	-
SR 89: Deep Well Ranch to SR 89A	ADOT	Yes	No	-
Eastern Corridor		Yes	No	-
SR 69 Bypass Corridor	ADOT	Yes	No	-

Four alternatives were developed for the 2040 horizon year transportation network. The TAC considered each project in the list of planned projects and evaluated whether that project would be feasible by the 2040 horizon year. There were some projects that - based on their size, the needs of the community, and/or the limited funding available - were deferred until after 2040 and not included in any alternative. Table 2 identifies each project in the list of planned projects that was deemed feasible by 2040, describes each, and indicates its inclusion in each of the four alternative future networks. Alternative 4 was developed to include all the projects in the list of planned projects for the region that were deemed feasible by 2040.

Table 2 - List of Projects Considered for 2040 with Inclusion Status in Each Alternative

Project	Project Description	Included in Alternatives			
		1	2	3	4
SR 89	Widen to 6 lanes from Center Street to Deep Well Ranch Road	X	X	X	X
Deep Well Ranch Road	New 4-lane facility connecting SR 89 to Pioneer Parkway	X	X	X	X
Airport Loop Rd	New 2-lane facility providing full access to the regional airport	X	X	X	X
SR 69	Widen to 6 lanes from SR 89 to SR 169	X	X		X
SR 169	Widen to 4 lanes from SR 69 to Old Cherry Rd	X	X	X	X
SR 89A	Widen to 6 lanes from SR 89 to Robert Rd	X	X	X	X
SR 89A / Robert Rd Traffic Interchange (TI)	New TI east of Robert Rd per Alternative 1 in the I-17 to Fain Rd Study	X	X	X	X
Fain Rd to SR 169 Connector	New 4-lane facility connecting Fain Road directly to SR 169		X	X	X
SR 169 to I-17 Connector	New 4-lane facility extending the Fain Rd to SR 169 Connector to the southeast, completing the connection to I-17			X	X
Great Western Extension	New 4-lane facility connecting SR 89A to SR 89, circumventing the airport area		X	X	X
Chino Valley Extension	New 4-lane facility connecting the future Great Western Extension to SR 89 north of Chino Valley			X	X
Northern Connector	New 2-lane facility extending Center Street in Chino Valley west to Williamson Valley Road	X	X	X	X
Sundog Connector	New 4-lane facility providing an east/west connection between Prescott Lakes Parkway and SR 69		X	X	X
Glassford Hill Rd	Widen to 6 lanes from SR 69 to SR 89A	X	X	X	X
Side Rd Connector	New 4-lane facility connecting SR 89 to the future Great Western Extension south of SR 89A	X	X	X	X
Glassford Hill Extension	New 4-lane facility extending Glassford Hill Road north to connect with the future Great Western Extension	X	X	X	X
Old Black Canyon Highway	Widen to 4 lanes from Country Club Bypass to Stoneridge			X	X
Country Club Bypass	New 2-lane facility connecting SR 69 in Prescott Valley to SR 69 north of Dewey-Humboldt while circumventing the Country Club			X	X
Sante Fe Loop Rd	New 4-lane facility connecting future Stoneridge Drive to Fain Road through Prescott Valley	X	X	X	X

Project	Project Description	Included in Alternatives			
		1	2	3	4
Stoneridge Dr	New 4-lane facility connecting SR 69 to the future Great Western Extension at the intersection with SR 89A	X	X	X	X
Granite Dells Parkway	New 4-lane facility from SR 89A north to new Great W estern Extension	X	X	X	X
Navajo Dr	New Facility from SR 69 to Old Black Canyon Highway	X	X		X
Lakeshore Dr	Widen to 4 lanes from Fain Road to Navajo Drive	X	X	X	X

Each of the four alternatives was developed in the TransCAD modeling software and provided to ADOT to be run in the statewide model. The alternative networks and the results of the model runs for each alternative are presented below.

3.1 Alternative 1

The TAC collaboratively identified those projects (from the list of planned projects) that would be essential to traffic circulation in the future network. These projects were identified by taking into account the needs identified in the No-Build network, the planned future residential and commercial developments in the area, the ease of freight access to the region, and other factors. Alternative 1 includes only those projects that were deemed essential, the majority of which are improvements to existing roadways, with some smaller new facilities.

Figure 3 depicts the Alternative 12040 CYM PO network. The figure highlights the areas that will be improved under this scenario in pink. Projects include widening of major state highways (SR 89 from Deep Well Ranch to Center Street), widening of local arterials (Glassford Hill Road and Lakeshore Drive), and the addition of smaller local arterials (Stoneridge Drive and Santa Fe Loop Road). The alternative also includes the Northern Connector, a new 2-lane facility that will improve connectivity between Chino Valley, Williamson Valley, and Prescott, and the Airport Loop Road, which will enhance mobility to and from the airport.

Figure 4 displays the projected volumes and LOS anticipated under the Alternative 1 network scenario. The highest volumes in the network are projected at the following locations:

- SR 89 between Center Street (in Chino Valley) and SR 89A
- SR 89A between SR 89 and Glassford Hill Road
- SR 69 between downtown Prescott and SR 169
- Glassford Hill Road between SR 69 and SR 89A
- Willow Creek Road between Pioneer Parkway and downtown Prescott

Figure 3-Alternative 1 Regional Network

A=СОМ

Figure 4 - Alternative 12040 Traffic Volumes and Levels-of-Service

These roadway segments correspond to the major regional routes in the CYM PO region. Figure 4 also indicates that the LOS of several roadways will be at level of "F," or failing. The congested segments include the following:

- SR 89 in northern Chino Valley
- Willow Creek Road through Prescott
- SR 89 between Deep W ell Ranch Road and SR 69
- Manzanita Trail near the Prescott Country Club
- SR 69 west of Stoneridge Drive
- Various road segments in downtown Prescott
- Glassford Hill Road and Viewpoint Drive north of Santa Fe Loop Road
- the west-side ramps on the four traffic interchanges on SR 89A

Compared to the 2040 No-Build Network (described in working paper \#6 - Future Conditions), Alternative 1 alleviates congestion on SR 89A, the majority of SR 69, SR 89 between Deep Well Ranch Road and Center Street, Williamson Valley Road, and much of Glassford Hill Road.

3.2 Alternative 2

Alternative 2 was developed to include all of the projects present in Alternative 1, plus three regional connecting roadways. This alternative was conceived to cover all of the essential circulation projects, with the addition of some new options for regional travel and improved regional connectivity. Figure 5 shows the 2040 horizon year network proposed in Alternative 2. The three additional regional roadways are the Fain Road to SR 169 Connector, the Great Western Extension, and the Sundog Connector. The Fain Road to SR 169 Connector is a controlled-access facility that represents half of a roadway that would ultimately connect I-17 to Fain Road. This ultimate I-17 to Fain connection would provide an alternate route between the Phoenix area and the Prescott area, alleviating traffic on SR 69. The Great Western Extension provides an alternate route between Prescott Valley and SR 89 north of the airport, meant to alleviate traffic on SR 89 between Road 4 South and SR 89A. The Sundog Connector will connect SR 69 to Prescott Lakes Parkway, offering connectivity to residential and commercial development in the Diamond Valley area.

Figure 6 displays the projected volumes and LOS anticipated under the Alternative 2 network scenario. The figure indicates that the roadways with the highest traffic volumes are similar to those shown in the Alternative 1 network (Figure 4). The high-volume roadways include the following:

- SR 89 between SR 89A and Center Street in Chino Valley
- Willow Creek Road through Prescott
- SR 69 between Prescott and Dewey-Humboldt
- Glassford Hill Road between SR 69 and SR 89

Figure 5 - Alternative 2 Regional Network

A=COM

Figure 6 - Alternative 22040 Traffic Volumes and Levels-of-Service

ACOM

Alternative 1 indicated that the highest volume on SR 89A was between SR 89 and Glassford Hill Road. However, with the addition of the Great Western Extension, Alternative 2 shows a lower volume on SR 89A between Great Western and Glassford Hill Road. The volumes on the Fain Road to SR 169 Connector are low.

Figure 6 also depicts the LOS of several roadways at LOS "F." When compared to Alternative 1, the following segments are anticipated to still operate at LOS " F " under the Alternative 2 scenario:

- Willow Creek Road through Prescott
- SR 89 between Deep W ell Ranch Road and SR 69
- SR 69, M anzanita Trail near the Prescott Country Club
- SR 69 west of Stoneridge Drive
- Various road segments in downtown Prescott
- Glassford Hill Road and Viewpoint Drive north of Santa Fe Loop Road
- The west-side ramps on three of the four traffic interchanges on SR 89A

However, the congestion on Glassford Hill Road north of Santa Fe Loop Road, the Granite Dells Parkway/SR 89A traffic interchange, and SR 89 in northern Chino Valley have been reduced by this alternative.

3.3 Alternative 3

Alternative 3 was developed to include all of the projects in the list of planned projects that were identified as feasible by 2040, with the exception of SR 69 widening and the new Najavo Drive facility, which were included in Alternative 2. This alternative was developed to evaluate whether these two projects would be necessary, considering the addition of other regional circulation projects that provide capacity and connectivity to the network. The network alternative is displayed in Figure 7. The additional projects considered in Alternative 3 are the SR 169 to I-17 Connector (completing the ultimate Fain Road to $\mathrm{I}-17$ connector and providing an alternate route between the Phoenix and Prescott areas) and the Chino Valley Extension (an extension of Great Western that connects Prescott Valley to SR 89 north of Chino Valley). In exchange for the SR 69 widening and Navajo Drive projects, Alternative 3 adds a Country Club Bypass facility and widening Old Black Canyon Highway between Stoneridge Drive and Country Club Bypass, with the intent of diverting some SR 69 traffic onto Old Black Canyon Highway.

Figure 8 displays the projected volumes and LOS anticipated under the Alternative 3 network scenario. The figure indicates that the traffic volume distribution did not significantly change from Alternatives 1 and 2 to Alternative 3.

Figure 7 - Alternative 3 Regional Network

Figure 8 - Alternative 32040 Traffic Volumes and Levels-of-Service

The roadways with the greatest volumes are anticipated at the following locations:

- SR 89 from SR 89A to Center Street
- Willow Creek Road in Prescott
- SR 89A from Great Western to SR 89
- SR 69 from Prescott to Dewey-Humboldt
- Glassford Hill Road from SR 69 to SR 89A

The volume on the Fain Road to SR 169 Connector increased with the addition of the SR 169 to I-17 Connection segment. With the implementation of the network changes in Alternative 3 the following segments are anticipated to still operate at LOS ' F ':

- Willow Creek Road through Prescott
- SR 89 between Deep W ell Ranch Road and SR 69
- Various road segments in downtown Prescott
- View point Drive north of Santa Fe Loop Road
- The west-side ramps on three of the four traffic interchanges on SR 89A

The addition of the Country Club Bypass relieves congestion on Manzanita Trail near the Prescott Country Club, and the Chino Valley Extension improves SR 89 to LOS ‘D’ or better from Deep Well Ranch Road to the northern border of the CYM PO influence area. However, the removal of the SR 69 widening project causes the majority of SR 69 to fail at LOS "E" or worse, even with the widening of Old Black Canyon Highway, the addition of the Country Club Bypass, and the inclusion of the Sundog Connector.

3.4 Alternative 4

Alternative 4 was developed to include all the projects (in the list of planned projects for the region) that were deemed feasible by 2040. This scenario includes all of the projects that were present in Alternative 3, plus the SR 69 widening project and Navajo Drive widening projects. Figure 9 displays the Alternative 4 network.

Figure $\mathbf{1 0}$ displays the projected volumes and LOS anticipated under the Alternative 4 network scenario. This alternative does not significantly alter the traffic volume distributions from the other alternatives, and the same roadways listed previously have the heaviest volumes. Figure 8 indicates that the Alternative 4 LOS looks very similar to that of Alternative 3; however, SR 69 returns to the same state as in Alternative 2, with only a small segment west of Stoneridge Drive operating at LOS "F." M anzanita Trail, on the other hand, goes back to operating at LOS "F." This likely happens because the addition of lanes on SR 69 makes it a more desirable roadway to use than the Country Club Bypass.

Figure 9 - Alternative 4 Regional Network

Figure 10 - Alternative 42040 Traffic Volumes and Levels-of-Service

A=COM

4.0 Alternative Evaluation Process

The alternatives described in Section 3 of this working paper were developed in cooperation with the TAC. An evaluation was performed for each alternative individually, and results were then compared to quantitatively rank their technical merits. The criteria used to evaluate the alternatives are listed in Table 3.

Table 3 - Network Alternative Evaluation Criteria

\#	Criteria	Performance Measures
1	Improve traffic operations	Total miles of projected LOS E or F
2	Promote mobility and accessibility for personal and freight transport	Travel time savings per home-based work trip compared to No-Build Alternative
		Percent of 24-hour truck VM T on congested facilities
3	M aintains planning consistency	Consistent with comprehensive plans, city/town general plans, previous regional transportation plan and corridor studies
4	Right-of-way considerations	Total estimated right-of-way (ROW) needed
5	Potential to result in relocations or displacements of a protected population	Qualitative assessment of the new ROW required and the likelihood that relocations or displacements would be required in areas where protected populations have been identified
6	Potential to affect protected populations' community	Qualitative assessment of the potential for adverse effects to the communities in which protected populations live
7	Improve safety by strengthening and expanding roadway access management	Number of additional centerline miles with a high level of access management compared with the 2040 No-Build condition
8	Cost	Total estimated cost for all projects included in addition to 2040 No-Build condition
		Ratio of estimated cost to annual time savings from building the alternative
9	Ease of implementation	Constructability based on miles of included improvements that are new major regional freeways
10	Local agency and public acceptance	Local community support for and acceptance of the alternative

The evaluation criteria were developed in coordination with the TAC. Results of the evaluation on all criteria were compared across alternatives. The criteria and their performance measures are described below.

4.1 Descriptions of Criteria

Improve Traffic Operations

This criterion is a calculation of the total miles of level of service "E" or "F" for each network alternative. LOS "E" and "F" were considered failing levels, meaning that the fewer the congested miles, the better the performance.

Promote M obility and Accessibility for Personal and Freight Transport
It is important to improve mobility for residents, visitors, and freight carriers operating in the region. This criterion has two performance measures: one related to personal travel and one related to freight travel. The first performance measure compares travel time savings per each home-based work trip compared to the No-Build Alternative. Home-based work trips - that is, those trips with one end located at home and the other at work, no matter the direction of travel - are typically the most prevalent type of trip during a weekday. They tend to have the greatest impact on the transportation system, since they are heavily concentrated during peak travel periods. This performance measure calculates the average of the travel times of all home-based work trips in the No-Build network, then compares that to the average of the travel times of all home-based work trips in each network Build alternative. The second performance measure is the percent of daily vehicle miles that trucks travel in the system on congested roadways. A "congested roadway" refers to a roadway operating at LOS 'E' or ' F ' during the time the truck is traveling on it.

M aintains Planning Consistency

The improvement projects that were previously planned in the CYM PO area are listed in Table 1. This evaluation criterion evaluates whether the projects in the network alternative are consistent with those shown in the table. Although some of the projects from Table 1 were not considered due to the size of the project, the needs of the community, and/or the limited funding available, the majority were considered in at least one of the network alternatives. This criterion indicates which alternatives maintained the most consistency with the planned projects.

Right-of-W ay Considerations
A transportation project cannot be built unless the land necessary to build and operate the project is first acquired. Acquisition of ROW is expensive and, in situations where the land is already occupied by active land uses, its acquisition will disturb the community's environment, continuity, and way of life. This criterion estimates the amount of ROW that would need to be acquired for each alternative. The more ROW needed, the less desirable the alternative.

Potential to Result in Relocations or Displacements of a Protected Population

If the land needed for a roadway project includes land on which a home is already located, the residents of that home will need to vacate and find alternative housing (with assistance from the responsible agency, as required by law). Protected populations include certain racial and ethnic minorities, lowincome households, disabled persons, and elderly persons, among others (in accordance with Title VI of
the Civil Rights Act and Executive Order 12898). This criterion was set to evaluate the extent to which any protected populations would need to be moved due to ROW acquisitions.

Potential to Affect Protected Populations' Community

In addition to ROW acquisition, a new roadway can negatively affect a community simply through its location; for example, by forming a barrier to circulation. A large facility, such as a freeway or major arterial, can split a community, isolating a group on one side of the facility from neighbors and community amenities on the other side. This criterion was established to determine the potential of each alternative for creating such barriers affecting protected populations.

Improve Safety by Strengthening and Expanding Roadway Access M anagement
Vehicular crashes often involve conflicts between vehicles at public or private access points. Sound access management practices can reduce the number of crashes while enhancing the efficiency of traffic flow. This criterion quantifies linear miles of new access management - either new facilities that will effectively manage access or existing facilities that will have access management features added.

Cost
The level of funding needed to complete each network alternative is an important factor in the evaluation. The cost criterion includes two performance measures. The first is the estimated total cost of each alternative. The second represents a form of cost/benefit analysis. This performance measure compares the total cost of the alternative to the annual time savings resulting from that alternative. The time savings is gleaned from reduction of congestion as compared to the No-Build network. For example, in the No-Build network, a person may have sat in traffic for 60 minutes on the way to work. In a network with a Build alternative implemented, that same trip may take only 55 minutes. If a person makes that same trip twice in one day, for 250 days per year, then that person will save more than 20 hours of time each year. The total annual time savings for an alternative is the sum of the time savings off all the trip-makers in the network. It should be noted that a transportation investment may have many benefits other than travel time savings.

Ease of Implementation
Transportation improvements can be difficult to implement. Besides the necessary funding, implementation requires public support, limiting disruption to the community, maintaining access during construction, and other challenges. The ease of implementation criterion compares the number of roadways in each alternative which are considered the most difficult to build.

Local Agency and Public Acceptance

The final criterion is the level of acceptance from the CYM PO member agencies and the public. None of the projects proposed will be completed without community acceptance. The local agencies reviewed the evaluation results for all other criteria and a recommended network alternative were presented to the public on Monday, 9/29/14. The local agencies criterion was evaluated based on the input at the public meeting and through the TAC coordination.

AECOM

4.2 Alternative Analysis Results

Table 4 presents the results of the alternative analysis. Each alternative is evaluated for all performance measures. The black circles represent high impact and a low level of acceptability based on CYM PO's goals and those of the member agencies. The hollow circles represent a low impact and high level of acceptability to the agencies. Half circles represent an intermediate impact. The evaluation indicates that, although alternatives 3 and 4 do the best job of improving mobility and saving time, they do so at a high cost compared with other Build alternatives.

The recommended alternative, which is based on the results of this evaluation, will be presented in the Draft Recommendation Working Paper.

Table 4 - Alternative Analysis Results

Criteria	Performance Measures	No-Build Alternative*	Build Alternative 1	Build Alternative 2	Build Alternative 3	Build Alternative 4
Improve traffic operations	Total miles of total projected LOSE or F	- 77.91 miles	- 47.94 miles	- 45.91 miles	- 48.15 miles	- 40.74 miles
	Travel time savings per home-based work (HBW) trip compared to No-Build Alternative	- Travel time is greater than all 4 Build alternatives	- 2.18 minutes per HBW trip	- 2.43 minutes per HBW trip	- 2.49 minutes per HBW trip	- 2.59 minutes per HBW trip
Promote mobility and accessibility for personal and freight transport	Percentage of 24 -hour truck VMT on congested facilities	- 49\% Truck VMT	- 24\% Truck VMT	- 22\% Truck VMT	- 26\% Truck VM T	- 19\% Truck VMT
M aintains planning consistency	Consistent with comprehensive plans, city/town general plans, previous regional transportation plan and corridor studies	- None of the planned improvements are implemented	- Nearly all projects are present in previous planning documents, and 7 previously planned projects are not included	- Nearly all projects are present in previous planning documents, and 4 previously planned projects are not included	- Nearly all projects are present in previous planning documents, and 2 previously planned projects are not included	- Nearly all projects are present in previous planning documents
ROW considerations	Total estimated ROW needed	- No new ROW	- Approximately 500 acres	- Approximately 1,050 acres	- Approximately 1,800 acres	- Approximately 1,850 acres
Potential to result in relocations or displacements within a protected population	Qualitative assessment of the new ROW required and the likelihood that relocations or displacements would be required in areas where protected populations have been identified	- Wouldn't result in any relocations/displacements within protected populations.	- Potential for relocations/ acquisitions along many of the new facilities	- Potential for relocations/acquisitions along many of the new facilities	- Potential for relocations/acquisitions along many of the new facilities	- Potential for relocations/acquisitions along many of the new facilities
Potential to affect protected populations' community	Qualitative assessment of the potential for adverse effects to the communities in which protected populations live.	- No new effects for surrounding communities	- Potential for new facilities to affect continuity of adjacent communities	- Similar to Alt 1	- Similar to Alt 1	- Similar to Alt 1
Improve safety by strengthening and expanding roadway access management	Number of additional centerline miles with a high level of access management compared with the 2040 No-Build condition	- No additional miles	- 24 miles	- 57 miles	$\bigcirc 83$ miles	$\bigcirc 83$ miles
	Total planning level cost estimates for all projects included in addition to 2030 Base condition	- \$0.00	- \$312 Million	- \$474 M illion	- \$638 M illion	- \$674 M illion
Cost	Comparison of total alternative planning level cost to total annual time savings compared to the No-Build network	- No time savings	$\begin{gathered} \circ 84.30 \\ \text { (annual min per } \$ 100 \text { spent) } \end{gathered}$	$\stackrel{\bullet 62.55}{\text { (annual min per } \$ 100 \text { spent) }}$	$\stackrel{48.18}{\text { (annual min per } \$ 100 \text { spent) }}$	$\stackrel{\bullet 47.31}{\text { (annual min per } \$ 100 \text { spent) }}$
Ease of implementation	Probability and constructability based on miles of included improvements that are new major regional freeways	- No new major regional freeways included	- No new major regional freeways included	- Approximately 18 miles	- Approximately 42 miles	- Approximately 42 miles
Local agency acceptability	Anticipated local municipal support for and acceptance of the network alternative, based on input from TAC	\bullet	\bullet	\bigcirc	-	\bullet

No-Build Alternative includes some area improvements which have already been funded

Central Yavapai Metropolitan Planning Organization

Regional Transportation Plan Update 2040

Travel Demand Model Validation Revised for comments

Iune 2014

Prepared by:
Hexagon
Transportation Consultants, Inc. A三COM

Central Yavapai Metropolitan Planning Organization Transportation Plan Update 2040

Travel Demand M odel Validation

June 2014

Member Agencies:
City of Prescott
Town of Chino Valley Town of Dewey-Humboldt
Town of Prescott Valley
Yavapai County

Table of Contents

1.0 Introduction 1
2.0 Model Validation Database 1
2.1 Cordon Line Database 3
2.2 Screenline Database 5
2.3 Facility Type Database 7
2.4 Volume Group and Roadway Database 9
3.0 Model Validation. 10
3.1 Additional Travel M arkets Data Collection 11
3.2 Truck M odel Validation 13
3.3 Household Income Analysis. 15
3.4 Non Home Based Trip Rates 15
3.5 Collector Roadways Speeds 17
3.6 Roadway and Centroid M odifications 17
4.0 Model Validation Results 18
4.1 Cordon and Screen Line Results. 18
List of Figures
Figure 1 - CYM PO Planning Area 2
Figure 2 - CYM PO Focused M odel Cordon Line 4
Figure 3 - CYM PO Focused M odel Screen Lines 6
Figure 4 - Existing Roadway Functional Classification. 8
Figure 5 - College Campus Locations 12
Figure 6 - Validated Truck M odel Volumes 14
Figure 7 - Validation Results: Average Daily Traffic 19

List of Tables

Table 1 - CYM PO Cordon Line 3
Table 2 - CYM PO Focused M odel Screenlines 7
Table 3 -Facility Type Validation Guidelines 9
Table 4 - Volume Group Validation Guidelines 9
Table 5 - Colleges Included in model 11
Table 5 - CYM PO M odel AZTDM 2 NHB Trip Rates. 16
Table 6 - French Broad River NHB Trip Rates 16
Table 7 - Screen Line Validation 20
Table 8 - Facility Type Validation Results. 20
Table 9 - Volume Group Validation Results 20

1.0 Introduction

The purpose of this report is to document the development of a focused travel demand model for the Central Yavapai Metropolitan Planning Organization (CYMPO). The CYM PO focused travel model is based on the Arizona statewide travel demand model developed by the Arizona Department of Transportation (ADOT); AZTDM 2. The model operates in the TransCAD software platform.

ADOT has spent several years developing a statewide model that can focus on specific MPO planning areas of the state. The model is based on extensive data collection efforts that are beyond the reach of most MPOs. The model has been calibrated and validated to a comprehensive set of observed data. The statewide model has also undergone a national peer review which was focused on model development, calibration and validation. Additionally, ADOT continues to update features of the model. Documentation of the AZTDM 2 model development and validation is available from ADOT in the following report: "Development of the Arizona Statewide Travel Demand M odel: Phase 2, September 19, 2011".

The CYM PO focused model encompasses the communities of Prescott, Prescott Valley, Chino Valley, Dewey-Humboldt, portions of Yavapai County and the Yavapai-Prescott Indian Tribe, including an area of influence of approximately 401 square miles. Figure 1 shows the location of these communities and the planning influence area. To validate the AZTDM 2 model for the CYM PO planning area, information on existing socioeconomic and roadway characteristics were collected for input into the model. Daily traffic counts on City and County roads were also collected to serve as the basis for the validation efforts. Cordon and screenline locations were developed to summarize and compare model validation estimates with actual count data. These efforts were completed under Task 4 and are documented in the "Current Socioeconomic and Transportation Conditions" report.

2.0 Model Validation Database

M odel validation efforts consists of several steps including estimation of person and truck trips (trip generation), distribution of trips (trip distribution), assignment of trips to the network (trip assignment) and aggregate and roadway level comparisons of model assigned daily vehicle trips to traffic counts.

The validation process is a top down approach starting with estimation of the number for trips within the region and ending with roadway level analysis. At each step, daily traffic counts are used to evaluate if the model is performing within acceptable standards. For the CYM PO model validation, both aggregate and disaggregate analyses were conducted. The validation standards used for this analysis are the same as those used to validate the AZTDM 2 model. The AZTDM 2 model validation followed guidelines from several sources, such as the Federal Highway Administration, the National Cooperative Highway Research Project and Best Practices.

Figure 1- CYM PO Planning Area

The model validation effort consisted of the following comparisons of model assigned traffic to aggregated traffic counts.

- Cordon Line
- Screen Line
- Facility Type
- Volume Group
- Roadway Level

The results of the comparison are then evaluated based on the validation guidelines to determine whether the standards have been met. The first step in the model validation process is to establish the database and validation guideline(s) for each of the categories. The development of the data sets for the model validation are described below.

2.1 Cordon Line Database

A cordon line is used to evaluate whether the correct number of trips are entering and exiting the study area. An imaginary circle is drawn across facilities at the boundary of the study area. The imaginary circle is drawn to include, to the extent possible, locations were traffic counts exist on the roadways that serve as entry/exit points to the region. These counts are then totaled to estimate the total daily volume entering and exiting the CYM PO region. Figure $\mathbf{2}$ shows the CYM PO area cordon line and Table 1 lists the facilities that comprise the CYM PO area cordon line and the existing traffic count for each of the facilities. Based on the information in Table 1 it is estimated that there are approximately 47,000 daily trips between the CYM PO area and the rest of the region. The validation target for the cordon line validation is 10 percent. This means that the sum of the model assigned volumes crossing the cordon line is within 10% of the traffic counts at the cordon line.

Table 1-CYM PO Cordon Line

Roadway	Location	Existing Count
S. R 89	S. of Big Chino Rd.	8,890
Perkinsville Rd.	W. of Forest Service 641 Rd.--	100
S.R.89A	W. Of Mingus West Rd.	1,880
S. R. 169	W. of I-17	5,000
S.R. 69	W. of I-17	11,800
Senator Highway	S. of Nathan Ln.	2,770
S.R. 89	N. of Haisley Rd.	5,780
Copper Basin Rd.	S. of Vista Rd.	3,960
Iron Springs Rd.	W. of Hereford Dr.	3,420
Williamson Valley Rd.	N. of Outer Loop Rd.	3,180
TOTAL		$\mathbf{4 6 , 7 8 0}$

Figure 2 - CYM PO Focused Model Cordon Line

2.2 Screenline Database

Screenlines are tools to analyze whether the CYM PO focused model is replicating the existing travel patterns in the CYM PO region. Like cordon lines, screenlines are imaginary lines drawn across major roadways at specific locations in the roadway netw ork. Figure 3 shows the screenlines for the CYM PO focused model.

Seven screenlines were developed for the CYM PO model validation, four north/south screenlines and three east/west screenlines. Each screenline was drawn to capture travel patterns in the area.

For example, screenline 1 includes facilities that capture trips coming to/from the City of Prescott traveling in a north/south direction. Screenline 2 captures travel between the Town of Prescott Valley and the City of Prescott. Like the cordon line analysis, the evaluation target for each screenline is to have the model assigned volumes be within 10\% of the traffic counts. Table $\mathbf{2}$ presents the seven CYM PO screenlines and the sum of the existing traffic counts at the screenlines.

Figure 3 - CYM PO Focused M odel Screen Lines

Table 2 - CYM PO Focused Model Screenlines

Screenline Number	Location	Sum of Existing Traffic Counts	Travel Pattern
1	North Prescott	47,200	N/S travel to/from City of Prescott
2	Prescott/Prescott Valley	59,400	E/W travel to/from Prescott and Prescott
Valley			

2.3 Facility Type Database

Facility type validation is an analysis of roadways that have the same functional classification. The functional classification of roadways for the CYM PO region was documented in the Draft Chapter: Current Socioeconomic and Transportation Conditions and also depicted in Figure 4. Existing traffic counts are totaled for roadways by facility type and then compared to the sum of the model assigned traffic volumes by facility type. The validation standard for facility types varies by the type of facility and is shown in Table 3

Figure 4- Existing Roadway Functional Classification

Table 3 -Facility Type Validation Guidelines

Facility Type	Number of Count Locations	Validation Guideline
Freeways	10	$+-7 \%$
Major Arterials	37	$\mathrm{H}-10 \%$
Minor Arterials	49	$\mathrm{H}-15 \%$
Collectors	110	$\mathrm{H}-20 \%$

2.4 Volume Group and Roadway Database

The goal of the volume group validation is to ascertain that the model is correctly assigning traffic to roadways based on the amount of traffic of the facilities. Aggregate validation compares the sum of all counts and assigned model volumes by volume group. Disaggregate validation compares the individual count and model assignment at a specific location. The volume groups and aggregate validation standards used for the CYM PO model validation is listed in Table 4.

Table 4 - Volume Group Validation Guidelines

Volume Group (vpd)	Number of Count Locations	Validation Guideline Aggregated	Validation Guideline Disaggregated
0 to 4,500	94	$+-10 \%$	48%
4,500 to 10,000	52	$+-10 \%$	36%
10,000 to 15,000	22	$+-10 \%$	31%
15,000 to 20,000	12	$+-10 \%$	28%
20,000 to 35,000	25	$H-10 \%$	24%

[^1]
3.0 Model Validation

Once the model validation database was in place the focused model was run. The results of the traffic assignments were compared to the validation database and, through an iterative process, adjustments were made to model inputs and parameters until the model validation targets were met. The first step in model validation is to ensure the model is accurately estimating the number of trips with the region and that the distribution of those trips within the region is correct.

The results of the first model validation run indicated that the model was doing a good job overall in estimating trips into and out of the area at the cordon line. The model assigned traffic was with 5% of the counts at the cordon line. However, within the study area the model was under estimating trips by approximately 15%. This was not an unexpected result because the AZTDM 2 model was also low at the CYM PO cordon.

The CYM PO trip generation model uses occupied dwelling units as one of the inputs. Seasonal households are not included in the model as part of the occupied households. Approximately seven percent of the households in the CYM PO region are seasonal households. Seasonal households within the CYM PO region were added to the database and the model was rerun. The inclusion of the seasonal households in the database resulted in an increase of approximately 24,000 daily trips. The inclusion of seasonal households improved the model validation. However, the number of trips generated by the model was still low compared to the counts.

A series of analyses were conducted to indentify the cause of the under estimation of trips in the region. The analysis included:

- Identification of additional travel markets
- special events in the CYM PO region
- college enrollment in the CYM PO region
- Validation and modification of the AZTDM2 truck model for the CYM PO region
- Review of the household income segmentation
- Analysis of trip rates
- Review of the non-home-based trip generation rates
- M odification of the CYM PO focused model non-home-based trip rates
- M odification of speeds on collector roads
- Roadway and centroid connector modifications

3.1 Additional Travel Markets Data Collection

The initial validation runs showed that the model was under estimating trips. Two of the potential causes for the under estimation of trips in travel forecasting models are:

- Travel markets are missing from the weekday travel included in the model.
- Trip rates used in the trip generation model are too low

To determine if there were missing travel markets in the CYM PO focused model additional information was collected for special events and college enrollment. Special events are activities such as major conventions, sporting events, fairs, rodeos etc. These events do not occur on a daily basis and therefore are excluded from most regional models. However on a sub regional level, these types of activities can have an impact on daily travel.

CYM PO M PO staff provided a listing of special events in the CYM PO region. These events included activities such as the Annual Whiskey Row M arathon, Western Art Show and Annual Rodeo. The list was reviewed and it was determined that the majority of these events occur on weekends and therefore should not be included in the CYM PO model, which only estimates weekday travel.

The CYM PO model includes estimates of travel to/from colleges in the area. Daily college trips are estimated based on college enrollment at the campus location. The original socio-economic data used as input into the CYM PO focused model did not include college enrollment. Additional information on college enrollment in the CYM PO region was collected and the socio-economic database was updated to include this information. Table 5 lists the colleges included in the CYM PO model and. Figure 5 show the location of these colleges.

Table 5 - Colleges Included in model

College	Enrollment
Embry Riddle	1,723 students
Prescott College	1,134 students
Yavapai College Prescott	3,972 students
Yavapai College Career/Tech (Prescott airport)	541 students
Yavapai College Chino Valley	241 students
Yavapai College Prescott Valley	466 students

Figure 5 - College Campus Locations

3.2 Truck Model Validation

The Arizona Statewide Travel Demand Model (AZTDM 2) includes both short distance and long-distance truck models. Long distance truck trips are estimated from commodity flow data provided by the Federal Highway Administration. The long distance model simulates truck trips across North America to account for trips passing through Arizona and trips beginning and ending in Arizona. The long distance truck model also simulates truck trips between urban areas.

The short distance truck model is implemented to capture local truck trips and service deliveries not included in the FHWA commodity flow data. The model implemented within the AZTDM is based on travel behavior observed in the Phoenix metropolitan area. The short distance truck model estimates single-unit trucks and multi-unit trucks. It uses the model's population and employment database in a three-step trip generation, distribution, and assignment process. The model segments trip generation and distribution into twelve land use categories to match truck trips between compatible land uses.

The CYM PO model uses both the long-distance and short-distance truck model. The CYM PO long distance truck model uses the trip table from the AZTDM 2. The CYM PO short-distance truck model implements the trip generation and trip distribution procedures used in the AZTDM 2 . The key difference between the AZTDM 2 short distance truck model and the CYM PO truck model is the geographic modeled area. The CYM PO model only simulates short distance truck trips for Yavapai County to avoid overlap with the long distance trip model and short distance trips related to other urban areas.

Both short and long distance truck trips, combined with passenger vehicles on each modeled roadway segment results in the estimate of total traffic. Truck traffic estimates were not compared to truck counts. Rather, total traffic volume estimates were compared to total traffic counts. Figure 6 shows the validated truck model volumes for the existing year in the CYM PO region.

ACOM
Figure 6-Validated Truck Model Volumes

3.3 Household Income Analysis

The CYM PO model indicated that in several areas where property values are relatively high, there might be lower than anticipated trip generation which might be a result of inflated numbers of low income households. To verify, a spot comparison was completed of the TAZ low income data against the 2012 American Community Survey (5 -year) from the US Census Bureau. Preliminary results displayed that there were no conclusive results to indicate a need to change the model inputs. In some areas, the TAZ numbers for the under $\$ 25 \mathrm{k}$ population were lower, and the $\$ 45-65$ population higher, than the census data. It was thought that perhaps the retirement population may account for this discrepancy; however, a review of employment data produced inconclusive results.

3.4 Non Home Based Trip Rates

The CYM PO model was updated to include the changes noted above in 3.1 and 3.2. The model was then rerun and the validation results reviewed. The results indicated that the inclusion of college trips and updated truck trips improved the model validation. However the model was still under estimating daily travel in the CYM PO region which indicated that adjustments were needed to the trip rates used in the CYM PO model.

The initial trip rates used in the CYM PO model were the same as those used in the AZTDM 2 model. The trip rates are based on Arizona household travel survey information. Non home base trips are often under reported in household travel surveys. The non home based trip purpose is often linked with other trips. For example there are three trips and two different trip purposes in the following travel sequence:

Home $-\rightarrow$ Grocery Store \rightarrow Hardware Store \rightarrow Home

The above trip sequence translates into the following trips and trip purposes:

1. Home to Grocery Store: Home to shopping trip
2. Grocery Store to Hardware Store : Non home based trip
3. Hardware Store to Home: Home to Shopping trip

The second trip listed above is often missed in travel surveys because the traveler will see this as part of the first trip and thus the non home based trip is under reported. Therefore non home based trip rates in regional travel models are often adjusted during the model validation process.

Non home based trip rates information was collected and analyzed from other regions. Of the data collected, the French Board River M PO region (FBR) stood out as being similar in nature to the Prescott region. The FBR area encompasses the Asheville North Carolina region. This region has a high retirement population and also includes a high number of seasonal households. The non home based trip generation model structure used in the FBR model is the same as that used in the CYM PO model and therefore it was possible to efficiently update the non home based trip rates and measure the impact on CYM PO model validation. Tables 5 and 6 list the CYM PO and FBR Non Home Based Trip rates.

Table 5 - CYM PO Model AZTDM2 NHB Trip Rates

0-1 Autos Per Household				
Household Income	1 Person	2 Person	3 Person	4+ Person
$0-25 \mathrm{~K}$	0.38	1.24	1.24	1.24
$25-45 \mathrm{~K}$	0.38	1.55	2.57	2.57
$45-65 \mathrm{~K}$	0.38	1.55	2.57	2.57
$65-100 \mathrm{~K}$	2.16	1.55	4.27	4.27
$100+\mathrm{K}$	2.16	1.55	6.28	7.23
$\mathbf{2 + A u t o s ~ P e r ~ H o u s e h o l d ~}$				
Household Income	$\mathbf{1 P e r s o n}$	$\mathbf{2}$ Person	$\mathbf{3}$ Person	$\mathbf{4 +}$ Person
$0-25 \mathrm{~K}$	0.91	2.81	2.81	2.81
$25-45 \mathrm{~K}$	0.91	3.26	3.27	3.27
$45-65 \mathrm{~K}$	0.91	3.26	3.27	3.27
$65-100 \mathrm{~K}$	2.16	3.26	4.27	4.27
$100+\mathrm{K}$	2.16	3.26	6.28	7.23

Table 6-French Broad River NHB Trip Rates

0-1 Autos Per Household				
Household Income	1 Person	2 Person	3 Person	4+ Person
$0-25 \mathrm{~K}$	0.68	1.864	1.27	1.68
$25-45 \mathrm{~K}$	0.68	2.63	1.27	1.68
$45-65 \mathrm{~K}$	0.68	1.43	3.70	4.30
$65-100 \mathrm{~K}$	2.46	2.63	3.71	4.30
$100+\mathrm{K}$	2.46	1.43	3.71	5.11
$\mathbf{\| c \| c \| c \| c \| c \|}$				
Household Income	$\mathbf{1}$ Person	$\mathbf{2}$ Person	3 Person	$4+$ Person
$0-25 \mathrm{~K}$	0.98	2.53	2.81	2.81
$25-45 \mathrm{~K}$	0.98	4.13	2.81	3.63
$45-65 \mathrm{~K}$	1.04	4.73	3.91	4.47
$65-100 \mathrm{~K}$	2.46	4.73	5.50	6.06
$100+\mathrm{K}$	2.46	4.73	5.50	6.06

The CYM PO model non home based trip rates were replaced with the FBR rate. The CYM PO model was rerun with the updated rates and the model results reevaluated. The update to the non home based trip rates resulted in an increase of approximately 25,800 trips in the CYM PO region. The inclusion of the FBR non home based trip rates improved the validation of the CYM PO model. The validation
comparisons at the cordon and screenlines indicated that the model was producing an accurate estimate of total trips in the CYM PO region.

3.5 Collector Roadways Speeds

The modification of the NHB trip rates improved the validation of the CYM PO model. However, there were still issues with the model assigned volumes by facility type. The model was under assigning major arterials and over assigning collectors in the study area.

The CYM PO model uses posted speeds provided by the user. The model input speeds were compared by facility type and, in general, it was found that the collector speeds being used in the model were higher than the posted speeds on the collector facilities. In the CYM PO region, the majority of collector roadways are posted at 25 MPH . The model assigned speeds for collectors were averaging about 40 MPH.

Speeds for all collectors in the CYM PO focused model were reset to 25 M PH . The model was rerun and the once again the model assigned volumes were compared to the validation database. The number of trips in the region did not change and therefore the validation of screenlines and cordon remained about the same. However the validation by facility type and roadway group showed substantial improvement.

3.6 Roadway and Centroid Modifications

The adjustments to the CYM PO focused model described above ensured the model was validated in terms of total trips and the distribution of trips. The assigned volumes were summed by facility type and compared to the counts by facility type and that comparison showed that the model was accurately assigning trips by facility type. The final step in model validation was to review the assignment results at the individual roadway level.

The speeds on individual roadway facilities were increased or decreased to produce a more accurate estimate of assigned traffic compared to the counts. These network refinements concentrated on the higher level facilities in the study area. In corridors where two arterial run parallel to each other, it is often necessary to adjust model speeds on both facilities to improve the assignment results. Gurley and Sheldon Streets in the City of Prescott are examples of arterials where input speeds were modified to reflect actual driving behavior, which improved the validation. The model was over assigning trips to Gurley Street and under assigning trips to Sheldon Street. The model speeds on both of these facilities were modified to better match the traffic counts on these roads.

In some instances to improve the assignment to roadways, centroid connectors were added, modified or deleted. In transportation models centroid connectors distribute the trips from a traffic analysis zone (TAZ) to roadway facilities. A TAZ can have multiple connectors. Generally a TAZ is connected to each roadway it is adjacent to by a centroid connector. During the validation process modifications were made to centroid connectors to improve model validation.

4.0 Model Validation Results

A total of 22 validation runs were completed to validate the CYM PO. After each validation run the model assigned volumes were compared to the daily traffic counts for each of the validation categories identified in Section 2 of this report. This was an iterative process. At each successive model run, inputs and parameters were adjusted until further changes to the model no longer improved overall model validation.

On a daily basis the CYM PO model results in the following ${ }^{1}$:

- Trips Per Person
- Trips Per household
- Assigned Trips: (CYM PO Region) 394,000
- Vehicle M iles of Travel (CYM PO Region)
- Vehicle Hours of Travel (CYM PO Region)
3.5
8.1

2,616,947
57,518

Figure 7 show the traffic assigned volumes for the CYM PO region.

4.1 Cordon and Screen Line Results

The CYM PO model accurately estimates existing daily traffic in the CYM PO region. Regional level validation statistics show the following results:

- Cordon Validation: model assigned trips to counts within 4%
- Screenline Validation: model assigned trips to total screenline volumes within 1%
- Total assigned volumes compared to total counts within 2%

Table 7 lists the validation results at the regional screenlines.

[^2]Figure 7 - Validation Results: Average Daily Traffic

A=COM
Table 7-Screen Line Validation

Screenline Number	Location	Counts	Volume	Percent Error	RMSE
1	North Prescott	47,200	43,000	9%	15%
2	Prescott/Prescott Valley	59,400	60,000	1%	3%
3	North of 89A	24,900	27,300	10%	10%
4	West of Williamson Valley Rd.	8,000	8,100	1%	2%
5	West of Fain Rd.	32,300	33,700	5%	13%
6	South of 89A	31,300	32,600	4%	16%
7	SR North of Chino Valley	8,900	8,400	6%	6%
TOTAL		$\mathbf{2 1 2 , 0 0 0}$	$\mathbf{2 1 3 , 1 0 0}$	$\mathbf{1 \%}$	$\mathbf{1 1 \%}$

Tables 8 and 9 show the results of the CYM PO focused model validation by facility type and roadway volume group.

Table 8 - Facility Type Validation Results

Facility Type	Validation Guideline	Counts	Model	Percent Error
Freeway	$+-7 \%$	90,400	94,0000	4%
Major Arterial	$+-10 \%$	616,700	616,300	1%
Minor Arterial5	$H-15 \%$	567,800	583,900	3%
Collectors	$H-20 \%$	363,100	322,800	11%

Table 9-Volume Group Validation Results

Volume Group (vpd)	Validation Guideline	Count	Model	Percent Error	RMSE
0 to 4,500	$H-10 \%$	188,400	200,500	6%	47%
4,500 to 10,000	$H-10 \%$	344,000	338,700	2%	49%
10,000 to 15,000	$H-10 \%$	265,100	258,800	2%	22%
15,000 to 20,000	$H-10 \%$	211,600	202,400	4%	19%
20,000 to 35,000	$H-10 \%$	617,300	602,100	2%	10%

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/18/14	0	38	13	0	0	0	0	1	0	0	0	0	0	52
01:00	0	43	6	0	1	0	0	1	0	0	0	0	0	51
02:00	0	26	8	0	0	0	0	1	0	0	0	0	0	35
03:00	0	36	10	0	0	0	0	5	0	0	0	0	0	51
04:00	0	58	24	1	4	0	0	6	0	0	0	0	0	93
05:00	0	177	51	0	0	0	0	6	0	0	0	0	0	234
06:00	0	394	116	0	6	0	0	8	0	0	4	0	1	529
07:00	0	535	137	0	8	2	0	5	5	0	7	0	0	699
08:00	0	564	163	0	7	1	1	7	7	0	3	0	4	757
09:00	0	694	183	0	4	1	0	11	7	0	12	2	2	916
10:00	0	798	222	0	14	2	0	3	7	0	10	3	3	1062
11:00	3	938	264	3	7	0	0	6	5	0	4	4	7	1241
12 PM	1	1001	267	5	13	2	1	4	9	0	17	4	5	1329
13:00	1	1011	252	2	10	1	0	3	9	0	22	6	5	1322
14:00	2	1058	285	1	9	1	0	2	9	0	12	3	7	1389
15:00	0	1164	263	4	8	6	0	2	14	0	11	4	10	1486
16:00	0	1183	291	4	5	5	0	7	20	0	14	3	11	1543
17:00	0	1146	231	0	4	8	0	1	13	0	10	7	17	1437
18:00	1	677	131	0	3	2	0	2	3	0	5	2	2	828
19:00	0	489	108	0	1	0	0	0	1	0	1	0	0	600
20:00	0	457	86	0	2	2	1	1	0	0	1	0	0	550
21:00	0	259	53	0	1	1	0	1	0	0	0	0	0	315
22:00	0	128	23	0	0	0	0	1	0	0	1	0	0	153
23:00	0	90	15	0	0	0	0	2	0	0	0	0	0	107
Day Total	8	12964	3202	20	107	34	3	86	109	0	134	38	74	16779
Percent	0.0\%	77.3\%	19.1\%	0.1\%	0.6\%	0.2\%	0.0\%	0.5\%	0.6\%	0.0\%	0.8\%	0.2\%	0.4\%	
AM Peak	11:00	11:00	11:00	11:00	10:00	07:00	08:00	09:00	08:00		09:00	11:00	11:00	11:00
Vol.	3	938	264	3	14	2	1	11	7		12	4	7	1241
PM Peak	14:00	16:00	16:00	12:00	12:00	17:00	12:00	16:00	16:00		13:00	17:00	17:00	16:00
Vol.	2	1183	291	5	13	8	1	7	20		22	7	17	1543

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/19/14	0	52	6	0	0	0	0	0	0	0	0	0	0	58
01:00	0	31	6	0	0	0	0	2	0	0	0	0	0	39
02:00	0	25	6	0	2	0	0	2	0	0	0	0	0	35
03:00	0	30	9	0	0	0	0	4	0	0	0	0	0	43
04:00	0	71	20	0	2	1	0	4	0	0	0	0	0	98
05:00	0	186	48	0	3	0	0	3	0	0	0	0	0	240
06:00	0	372	118	1	4	2	0	4	0	0	4	0	1	506
07:00	1	502	164	2	3	0	0	6	1	0	6	1	0	686
08:00	0	530	161	3	8	0	0	8	2	0	4	0	2	718
09:00	0	628	196	2	8	1	0	9	5	0	11	2	0	862
10:00	0	791	233	0	11	4	0	5	8	0	7	3	3	1065
11:00	0	861	238	1	12	1	0	2	7	0	21	3	8	1154
12 PM	1	981	243	3	7	2	0	5	10	0	11	1	9	1273
13:00	0	1086	311	0	5	1	1	6	17	1	8	0	7	1443
14:00	2	1072	284	0	5	2	0	1	10	0	18	0	3	1397
15:00	1	1196	261	2	10	7	0	6	14	0	10	5	10	1522
16:00	1	1238	275	3	3	7	0	7	10	0	10	3	15	1572
17:00	1	1184	259	2	1	5	0	2	12	0	16	2	8	1492
18:00	1	726	189	1	2	2	0	1	4	0	3	1	3	933
19:00	1	528	122	1	3	3	0	1	2	0	1	0	0	662
20:00	0	492	93	1	2	0	0	2	1	0	1	0	0	592
21:00	0	252	54	0	0	0	0	0	1	0	2	0	0	309
22:00	0	166	40	0	0	0	0	2	0	0	0	0	0	208
23:00	0	107	14	0	1	0	0	2	0	0	0	0	0	124
Day Total	9	13107	3350	22	92	38	1	84	104	1	133	21	69	17031
Percent	0.1\%	77.0\%	19.7\%	0.1\%	0.5\%	0.2\%	0.0\%	0.5\%	0.6\%	0.0\%	0.8\%	0.1\%	0.4\%	
AM Peak	07:00	11:00	11:00	08:00	11:00	10:00		09:00	10:00		11:00	10:00	11:00	11:00
Vol.	1	861	238	3	12	4		9	8		21	3	8	1154
PM Peak	14:00	16:00	13:00	12:00	15:00	15:00	13:00	16:00	13:00	13:00	14:00	15:00	16:00	16:00
Vol.	2	1238	311	3	10	7	1	7	17	1	18	5	15	1572

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/20/14	0	48	12	0	0	0	0	1	0	0	0	0	0	61
01:00	0	32	6	0	1	0	0	5	0	0	0	0	0	44
02:00	0	32	8	0	0	0	0	0	0	0	0	0	0	40
03:00	0	31	8	0	0	0	0	2	0	0	0	0	0	41
04:00	0	61	20	0	3	0	0	4	0	0	0	0	0	88
05:00	0	176	65	0	0	0	0	1	0	0	1	0	0	243
06:00	0	361	124	0	4	0	0	5	4	0	2	0	0	500
07:00	0	532	167	1	6	3	0	5	1	0	11	0	1	727
08:00	0	571	159	2	7	1	0	7	1	0	6	2	1	757
09:00	0	648	188	0	11	0	0	3	3	0	2	1	4	860
10:00	0	765	219	2	4	0	0	9	5	0	13	1	4	1022
11:00	1	870	245	1	9	2	0	4	5	1	10	3	4	1155
12 PM	0	1043	218	1	10	6	0	6	12	0	16	3	5	1320
13:00	1	1089	239	4	11	3	0	2	11	0	21	3	9	1393
14:00	0	1043	240	1	5	6	0	7	17	0	12	3	10	1344
15:00	1	1201	264	1	6	5	0	7	11	0	19	5	4	1524
16:00	0	1279	240	5	7	5	2	8	16	0	16	2	10	1590
17:00	0	1098	219	1	4	6	0	0	14	1	19	5	8	1375
18:00	0	796	164	1	4	5	0	3	3	0	6	1	1	984
19:00	0	577	117	0	5	0	0	2	2	0	2	0	0	705
20:00	0	461	85	3	2	0	0	2	2	0	2	1	0	558
21:00	0	310	81	0	0	0	0	2	0	0	2	0	0	395
22:00	0	199	28	0	0	0	0	1	3	0	0	0	0	231
23:00	0	99	15	0	0	1	0	2	0	0	0	0	0	117
Day Total	3	13322	3131	23	99	43	2	88	110	2	160	30	61	17074
Percent	0.0\%	78.0\%	18.3\%	0.1\%	0.6\%	0.3\%	0.0\%	0.5\%	0.6\%	0.0\%	0.9\%	0.2\%	0.4\%	
AM Peak	11:00	11:00	11:00	08:00	09:00	07:00		10:00	10:00	11:00	10:00	11:00	09:00	11:00
Vol.	1	870	245	2	11	3		9	5	1	13	3	4	1155
PM Peak	13:00	16:00	15:00	16:00	13:00	12:00	16:00	16:00	14:00	17:00	13:00	15:00	14:00	16:00
Vol.	1	1279	264	5	11	6	2	8	17	1	21	5	10	1590
Grand Total	20	39393	9683	65	298	115	6	258	323	3	427	89	204	50884
Percent	0.0\%	77.4\%	19.0\%	0.1\%	0.6\%	0.2\%	0.0\%	0.5\%	0.6\%	0.0\%	0.8\%	0.2\%	0.4\%	

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlis	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/18/14	0	53	12	0	0	0	0	2	0	0	0	0	0	67
01:00	0	24	9	0	0	0	0	2	0	0	0	0	0	35
02:00	0	21	7	0	0	0	0	4	0	0	0	0	0	32
03:00	0	37	8	0	5	0	0	2	0	0	0	0	0	52
04:00	0	92	32	0	4	0	0	4	0	0	1	0	0	133
05:00	0	240	68	0	4	2	0	9	0	0	1	1	0	325
06:00	0	458	171	0	9	0	0	12	3	0	8	0	3	664
07:00	0	973	243	5	11	1	0	10	15	0	15	8	12	1293
08:00	0	821	244	0	7	0	0	7	4	0	11	5	8	1107
09:00	0	877	242	2	14	2	1	7	9	0	8	2	11	1175
10:00	1	925	276	0	12	3	1	6	8	0	14	8	13	1267
11:00	0	935	222	0	7	3	1	7	10	1	16	0	11	1213
12 PM	0	919	217	3	8	4	1	3	15	1	17	4	16	1208
13:00	1	934	244	1	8	2	0	7	6	0	17	3	9	1232
14:00	1	856	222	3	7	3	2	5	8	0	14	6	13	1140
15:00	0	834	206	3	6	6	0	2	10	0	15	3	14	1099
16:00	0	875	193	1	8	3	1	2	11	0	9	4	6	1113
17:00	0	769	181	2	6	0	0	3	5	0	7	1	3	977
18:00	0	533	124	1	6	0	0	0	0	0	5	1	0	670
19:00	0	372	83	0	3	0	0	2	0	0	2	0	0	462
20:00	0	330	70	0	1	0	0	1	2	0	1	1	2	408
21:00	0	218	41	0	0	0	0	3	0	0	1	0	0	263
22:00	0	101	30	0	0	0	0	0	0	0	0	0	0	131
23:00	0	69	11	0	0	0	0	1	1	0	0	0	0	82
Day Total	3	12266	3156	21	126	29	7	101	107	2	162	47	121	16148
Percent	0.0\%	76.0\%	19.5\%	0.1\%	0.8\%	0.2\%	0.0\%	0.6\%	0.7\%	0.0\%	1.0\%	0.3\%	0.7\%	
AM Peak	10:00	07:00	10:00	07:00	09:00	10:00	09:00	06:00	07:00	11:00	11:00	07:00	10:00	07:00
Vol.	1	973	276	5	14	3	1	12	15	1	16	8	13	1293
PM Peak	13:00	13:00	13:00	12:00	12:00	15:00	14:00	13:00	12:00	12:00	12:00	14:00	12:00	13:00
Vol.	1	934	244	3	8	6	2	7	15	1	17	6	16	1232

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlis	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/19/14	0	45	10	0	0	0	0	1	0	0	0	0	0	56
01:00	0	31	4	0	0	0	0	5	0	0	0	0	0	40
02:00	0	15	6	0	0	0	0	4	0	0	0	0	0	25
03:00	0	35	9	0	1	0	0	3	0	0	0	0	0	48
04:00	0	109	29	0	8	0	0	5	0	0	0	0	0	151
05:00	0	235	60	1	6	1	0	8	2	0	2	0	0	315
06:00	0	474	161	1	11	0	0	6	5	0	8	3	1	670
07:00	0	963	288	2	10	1	1	12	12	0	17	2	5	1313
08:00	1	783	237	2	15	2	0	8	10	0	11	3	10	1082
09:00	0	845	265	4	10	2	2	8	15	0	24	6	13	1194
10:00	1	945	255	0	11	2	0	8	8	0	15	9	11	1265
11:00	0	988	229	1	10	3	0	11	9	0	16	6	4	1277
12 PM	0	922	223	3	12	5	0	6	11	0	11	5	12	1210
13:00	2	901	227	0	7	6	0	9	14	1	8	4	11	1190
14:00	0	937	191	1	9	3	0	5	9	0	9	2	12	1178
15:00	0	909	207	4	6	3	0	3	14	0	14	1	12	1173
16:00	1	872	194	1	2	3	0	3	14	0	12	0	6	1108
17:00	0	746	199	1	0	2	0	4	3	0	5	3	3	966
18:00	0	570	154	1	6	4	0	2	4	0	3	0	0	744
19:00	0	369	87	0	3	0	0	3	0	0	0	0	2	464
20:00	0	399	93	0	2	1	0	2	2	0	2	0	1	502
21:00	0	268	56	0	0	0	0	1	0	0	0	0	1	326
22:00	0	117	24	0	0	0	0	4	0	0	0	0	0	145
23:00	0	82	18	0	0	0	0	1	1	0	0	0	0	102
Day Total	5	12560	3226	22	129	38	3	122	133	1	157	44	104	16544
Percent	0.0\%	75.9\%	19.5\%	0.1\%	0.8\%	0.2\%	0.0\%	0.7\%	0.8\%	0.0\%	0.9\%	0.3\%	0.6\%	
AM Peak	08:00	11:00	07:00	09:00	08:00	11:00	09:00	07:00	09:00		09:00	10:00	09:00	07:00
Vol.	1	988	288	4	15	3	2	12	15		24	9	13	1313
PM Peak	13:00	14:00	13:00	15:00	12:00	13:00		13:00	13:00	13:00	15:00	12:00	12:00	12:00
Vol.	2	937	227	4	12	6		9	14	1	14	5	12	1210

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	TIrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/20/14	0	43	11	0	0	0	0	1	0	0	0	0	0	55
01:00	0	26	4	0	0	0	0	0	0	0	0	0	0	30
02:00	0	23	5	0	0	0	0	3	0	0	0	0	0	31
03:00	0	36	10	0	0	0	0	4	0	0	1	0	0	51
04:00	0	106	32	0	5	0	0	7	0	0	0	0	0	150
05:00	0	231	55	0	2	0	0	7	0	0	1	0	1	297
06:00	0	473	167	1	16	0	0	6	1	0	4	2	2	672
07:00	0	930	286	1	12	1	0	6	8	0	14	4	10	1272
08:00	1	812	219	1	12	0	0	3	17	0	14	1	9	1089
09:00	0	834	230	3	7	2	0	8	11	0	18	6	13	1132
10:00	0	923	251	0	9	3	0	6	8	0	21	3	10	1234
11:00	0	978	246	3	8	0	0	4	10	0	20	2	12	1283
12 PM	1	874	213	3	8	3	0	8	16	0	17	4	10	1157
13:00	0	908	241	4	9	0	0	8	13	0	9	9	10	1211
14:00	0	930	230	1	1	2	0	4	13	0	11	3	7	1202
15:00	0	914	194	0	7	5	0	8	13	0	13	1	11	1166
16:00	1	954	185	0	5	3	0	2	9	0	13	2	6	1180
17:00	1	850	201	0	3	0	0	2	5	0	5	1	4	1072
18:00	1	610	139	0	5	4	0	1	4	0	2	2	4	772
19:00	0	455	111	0	3	1	0	3	3	0	3	1	0	580
20:00	0	306	86	0	1	0	0	2	0	0	2	0	1	398
21:00	0	237	67	0	2	0	0	3	0	0	0	0	0	309
22:00	0	134	33	0	1	0	0	3	1	0	0	0	0	172
23:00	0	67	17	0	0	0	0	3	0	0	0	0	0	87
Day Total	5	12654	3233	17	116	24	0	102	132	0	168	41	110	16602
Percent	0.0\%	76.2\%	19.5\%	0.1\%	0.7\%	0.1\%	0.0\%	0.6\%	0.8\%	0.0\%	1.0\%	0.2\%	0.7\%	
AM Peak	08:00	11:00	07:00	09:00	06:00	10:00		09:00	08:00		10:00	09:00	09:00	11:00
Vol.	1	978	286	3	16	3		8	17		21	6	13	1283
PM Peak	12:00	16:00	13:00	13:00	13:00	15:00		12:00	12:00		12:00	13:00	15:00	13:00
Vol.	1	954	241	4	9	5		8	16		17	9	11	1211
Grand Total	13	37480	9615	60	371	91	10	325	372	3	487	132	335	49294
Percent	0.0\%	76.0\%	19.5\%	0.1\%	0.8\%	0.2\%	0.0\%	0.7\%	0.8\%	0.0\%	1.0\%	0.3\%	0.7\%	

Field Data Services of Arizona, Inc.

Eastbound, Westbound		Cars \&	2 Axle	$2 \text { Axle }$		$3 \text { Axle }$	$4 \text { Axle }$	$<5 \text { Axle }$		$>6 \text { Axle }$	<6 Axle	Latitude: 0' 0.000 Undefined			
Start						6 Axle						>6 Axle			
Time	Bikes	Tlıs	Long	Buses	6 Tire		Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/18/14	0	91	25	0	0	0	0	3	0	0	0	0	0	119	
01:00	0	67	15	0	1	0	0	3	0	0	0	0	0	86	
02:00	0	47	15	0	0	0	0	5	0	0	0	0	0	67	
03:00	0	73	18	0	5	0	0	7	0	0	0	0	0	103	
04:00	0	150	56	1	8	0	0	10	0	0	1	0	0	226	
05:00	0	417	119	0	4	2	0	15	0	0	1	1	0	559	
06:00	0	852	287	0	15	0	0	20	3	0	12	0	4	1193	
07:00	0	1508	380	5	19	3	0	15	20	0	22	8	12	1992	
08:00	0	1385	407	0	14	1	1	14	11	0	14	5	12	1864	
09:00	0	1571	425	2	18	3	1	18	16	0	20	4	13	2091	
10:00	1	1723	498	0	26	5	1	9	15	0	24	11	16	2329	
11:00	3	1873	486	3	14	3	1	13	15	1	20	4	18	2454	
12 PM	1	1920	484	8	21	6	2	7	24	1	34	8	21	2537	
13:00	2	1945	496	3	18	3	0	10	15	0	39	9	14	2554	
14:00	3	1914	507	4	16	4	2	7	17	0	26	9	20	2529	
15:00	0	1998	469	7	14	12	0	4	24	0	26	7	24	2585	
16:00	0	2058	484	5	13	8	1	9	31	0	23	7	17	2656	
17:00	0	1915	412	2	10	8	0	4	18	0	17	8	20	2414	
18:00	1	1210	255	1	9	2	0	2	3	0	10	3	2	1498	
19:00	0	861	191	0	4	0	0	2	1	0	3	0	0	1062	
20:00	0	787	156	0	3	2	1	2	2	0	2	1	2	958	
21:00	0	477	94	0	1	1	0	4	0	0	1	0	0	578	
22:00	0	229	53	0	0	0	0	1	0	0	1	0	0	284	
23:00	0	159	26	0	0	0	0	3	1	0	0	0	0	189	
Day Total	11	25230	6358	41	233	63	10	187	216	2	296	85	195	32927	
Percent	0.0\%	76.6\%	19.3\%	0.1\%	0.7\%	0.2\%	0.0\%	0.6\%	0.7\%	0.0\%	0.9\%	0.3\%	0.6\%		
AM Peak	11:00	11:00	10:00	07:00	10:00	10:00	08:00	06:00	07:00	11:00	10:00	10:00	11:00	11:00	
Vol.	3	1873	498	5	26	5	1	20	20	1	24	11	18	2454	
PM Peak	14:00	16:00	14:00	12:00	12:00	15:00	12:00	13:00	16:00	12:00	13:00	13:00	15:00	16:00	
Vol.	3	2058	507	8	21	12	2	10	31	1	39	9	24	2656	

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	TIrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/19/14	0	97	16	0	0	0	0	1	0	0	0	0	0	114
01:00	0	62	10	0	0	0	0	7	0	0	0	0	0	79
02:00	0	40	12	0	2	0	0	6	0	0	0	0	0	60
03:00	0	65	18	0	1	0	0	7	0	0	0	0	0	91
04:00	0	180	49	0	10	1	0	9	0	0	0	0	0	249
05:00	0	421	108	1	9	1	0	11	2	0	2	0	0	555
06:00	0	846	279	2	15	2	0	10	5	0	12	3	2	1176
07:00	1	1465	452	4	13	1	1	18	13	0	23	3	5	1999
08:00	1	1313	398	5	23	2	0	16	12	0	15	3	12	1800
09:00	0	1473	461	6	18	3	2	17	20	0	35	8	13	2056
10:00	1	1736	488	0	22	6	0	13	16	0	22	12	14	2330
11:00	0	1849	467	2	22	4	0	13	16	0	37	9	12	2431
12 PM	1	1903	466	6	19	7	0	11	21	0	22	6	21	2483
13:00	2	1987	538	0	12	7	1	15	31	2	16	4	18	2633
14:00	2	2009	475	1	14	5	0	6	19	0	27	2	15	2575
15:00	1	2105	468	6	16	10	0	9	28	0	24	6	22	2695
16:00	2	2110	469	4	5	10	0	10	24	0	22	3	21	2680
17:00	1	1930	458	3	1	7	0	6	15	0	21	5	11	2458
18:00	1	1296	343	2	8	6	0	3	8	0	6	1	3	1677
19:00	1	897	209	1	6	3	0	4	2	0	1	0	2	1126
20:00	0	891	186	1	4	1	0	4	3	0	3	0	1	1094
21:00	0	520	110	0	0	0	0	1	1	0	2	0	1	635
22:00	0	283	64	0	0	0	0	6	0	0	0	0	0	353
23:00	0	189	32	0	1	0	0	3	1	0	0	0	0	226
Day Total	14	25667	6576	44	221	76	4	206	237	2	290	65	173	33575
Percent	0.0\%	76.4\%	19.6\%	0.1\%	0.7\%	0.2\%	0.0\%	0.6\%	0.7\%	0.0\%	0.9\%	0.2\%	0.5\%	
AM Peak	07:00	11:00	10:00	09:00	08:00	10:00	09:00	07:00	09:00		11:00	10:00	10:00	11:00
Vol.	1	1849	488	6	23	6	2	18	20		37	12	14	2431
PM Peak	13:00	16:00	13:00	12:00	12:00	15:00	13:00	13:00	13:00	13:00	14:00	12:00	15:00	15:00
Vol.	2	2110	538	6	19	10	1	15	31	2	27	6	22	2695

Field Data Services of Arizona, Inc.

Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	$<5 \text { Axle }$	$5 \text { Axle }$	$>6 \text { Axle }$	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/20/14	0	91	23	0	0	0	0	2	0	0	0	0	0	116
01:00	0	58	10	0	1	0	0	5	0	0	0	0	0	74
02:00	0	55	13	0	0	0	0	3	0	0	0	0	0	71
03:00	0	67	18	0	0	0	0	6	0	0	1	0	0	92
04:00	0	167	52	0	8	0	0	11	0	0	0	0	0	238
05:00	0	407	120	0	2	0	0	8	0	0	2	0	1	540
06:00	0	834	291	1	20	0	0	11	5	0	6	2	2	1172
07:00	0	1462	453	2	18	4	0	11	9	0	25	4	11	1999
08:00	1	1383	378	3	19	1	0	10	18	0	20	3	10	1846
09:00	0	1482	418	3	18	2	0	11	14	0	20	7	17	1992
10:00	0	1688	470	2	13	3	0	15	13	0	34	4	14	2256
11:00	1	1848	491	4	17	2	0	8	15	1	30	5	16	2438
12 PM	1	1917	431	4	18	9	0	14	28	0	33	7	15	2477
13:00	1	1997	480	8	20	3	0	10	24	0	30	12	19	2604
14:00	0	1973	470	2	6	8	0	11	30	0	23	6	17	2546
15:00	1	2115	458	1	13	10	0	15	24	0	32	6	15	2690
16:00	1	2233	425	5	12	8	2	10	25	0	29	4	16	2770
17:00	1	1948	420	1	7	6	0	2	19	1	24	6	12	2447
18:00	1	1406	303	1	9	9	0	4	7	0	8	3	5	1756
19:00	0	1032	228	0	8	1	0	5	5	0	5	1	0	1285
20:00	0	767	171	3	3	0	0	4	2	0	4	1	1	956
21:00	0	547	148	0	2	0	0	5	0	0	2	0	0	704
22:00	0	333	61	0	1	0	0	4	4	0	0	0	0	403
23:00	0	166	32	0	0	1	0	5	0	0	0	0	0	204
Day Total	8	25976	6364	40	215	67	2	190	242	2	328	71	171	33676
Percent	0.0\%	77.1\%	18.9\%	0.1\%	0.6\%	0.2\%	0.0\%	0.6\%	0.7\%	0.0\%	1.0\%	0.2\%	0.5\%	
AM Peak	08:00	11:00	11:00	11:00	06:00	07:00		10:00	08:00	11:00	10:00	09:00	09:00	11:00
Vol.	1	1848	491	4	20	4		15	18	1	34	7	17	2438
PM Peak	12:00	16:00	13:00	13:00	13:00	15:00	16:00	15:00	14:00	17:00	12:00	13:00	13:00	16:00
Vol.	1	2233	480	8	20	10	2	15	30	1	33	12	19	2770
Grand Total	33	76873	19298	125	669	206	16	583	695	6	914	221	539	100178
Percent	0.0\%	76.7\%	19.3\%	0.1\%	0.7\%	0.2\%	0.0\%	0.6\%	0.7\%	0.0\%	0.9\%	0.2\%	0.5\%	

Field Data Services of Arizona, Inc.
Page 1
21636 N. Dietz Dr.
Maricopa, AZ 85138
(520) 316-6745

Site Code: 14-1062-002 Station ID: btwn. SR-89A \& Granville Pkwy.

Field Data Services of Arizona, Inc.

Field Data Services of Arizona, Inc.

Field Data Services of Arizona, Inc.

Glassford Hill Rd. btwn. SR-89A \& Granville Pkwy.

Field Data Services of Arizona, Inc.

Glassford Hill Rd. btwn. SR-89A \& Granville Pkwy.

Field Data Services of Arizona, Inc.

Field Data Services of Arizona, Inc.

Northbound, Southbound												Granville Pkwy. Latitude: 0' 0.000 Undefined		
Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlis	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/18/14	0	50	10	0	0	0	0	2	0	0	0	0	0	62
01:00	0	35	7	0	0	0	0	1	0	0	0	0	0	43
02:00	0	34	19	0	0	0	0	0	0	0	0	0	0	53
03:00	0	66	25	0	1	0	0	0	0	0	0	0	0	92
04:00	0	135	62	0	2	0	0	3	0	0	0	0	0	202
05:00	0	308	95	0	3	1	0	2	0	0	0	0	0	409
06:00	0	766	278	0	25	2	0	10	1	0	1	0	1	1084
07:00	0	1419	398	2	9	3	1	3	15	0	8	1	10	1869
08:00	0	929	311	3	22	2	0	5	5	0	5	3	1	1286
09:00	1	786	255	1	11	5	0	8	4	0	4	2	1	1078
10:00	2	822	260	0	16	4	0	4	5	0	4	2	0	1119
11:00	1	860	279	2	21	4	0	5	3	0	2	1	8	1186
12 PM	1	902	292	1	26	7	0	6	6	0	10	1	4	1256
13:00	2	942	315	1	25	4	1	5	4	0	9	2	1	1311
14:00	1	1177	325	2	26	6	1	6	13	0	5	1	2	1565
15:00	1	1310	404	3	23	1	0	6	8	0	12	2	8	1778
16:00	0	1439	381	2	13	4	0	5	16	0	4	1	4	1869
17:00	0	1327	346	1	9	3	0	1	3	0	4	2	0	1696
18:00	1	821	191	0	7	3	0	1	2	0	7	0	0	1033
19:00	0	489	116	0	0	1	0	0	1	0	1	0	0	608
20:00	0	539	118	0	3	1	0	0	1	0	1	0	0	663
21:00	0	330	74	0	0	2	0	0	1	0	0	0	0	407
22:00	0	137	24	0	0	0	0	0	0	0	0	0	0	161
23:00	0	87	14	0	0	0	0	1	0	0	0	0	0	102
Day Total	10	15710	4599	18	242	53	3	74	88	0	77	18	40	20932
Percent	0.0\%	75.1\%	22.0\%	0.1\%	1.2\%	0.3\%	0.0\%	0.4\%	0.4\%	0.0\%	0.4\%	0.1\%	0.2\%	
AM Peak	10:00	07:00	07:00	08:00	06:00	09:00	07:00	06:00	07:00		07:00	08:00	07:00	07:00
Vol.	2	1419	398	3	25	5	1	10	15		8	3	10	1869
PM Peak	13:00	16:00	15:00	15:00	12:00	12:00	13:00	12:00	16:00		15:00	13:00	15:00	16:00
Vol.	2	1439	404	3	26	7	1	6	16		12	2	8	1869

Field Data Services of Arizona, Inc.

Glassford Hill Rd. btwn. SR-89A \& Granville Pkwy.

Northbound, Southbound												Granville Pkwy. Latitude: $0^{\prime} 0.000$ Undefined		
Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlrs	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/19/14	0	53	16	0	0	0	0	1	1	0	0	0	0	71
01:00	0	74	13	0	0	0	0	1	0	0	0	0	0	88
02:00	0	72	15	0	0	0	0	0	0	0	0	0	0	87
03:00	0	78	23	0	1	0	0	0	0	0	0	0	0	102
04:00	0	153	51	0	3	0	0	2	0	0	0	0	0	209
05:00	0	329	107	0	6	0	0	2	0	0	0	0	0	444
06:00	0	685	257	2	17	0	0	8	4	0	6	1	2	982
07:00	1	1393	374	3	14	4	1	4	10	0	7	5	5	1821
08:00	0	952	311	3	20	5	1	6	1	0	2	1	1	1303
09:00	2	800	197	2	10	3	1	10	2	0	5	1	1	1034
10:00	1	775	255	1	16	3	0	5	4	0	2	3	1	1066
11:00	1	885	289	0	12	1	0	7	6	0	5	0	1	1207
12 PM	0	954	281	0	27	4	0	5	3	1	6	1	1	1283
13:00	1	999	294	4	22	3	0	3	2	0	5	3	4	1340
14:00	1	1105	334	1	15	5	0	4	9	0	10	2	5	1491
15:00	0	1262	346	1	14	5	0	4	7	1	9	5	3	1657
16:00	2	1278	334	0	5	6	0	5	9	0	16	3	4	1662
17:00	2	1402	369	1	2	10	0	4	4	1	5	2	2	1804
18:00	0	893	242	1	5	1	0	2	1	0	2	0	0	1147
19:00	0	518	142	0	0	3	0	2	2	0	1	0	0	668
20:00	0	507	96	0	0	1	0	1	1	0	0	0	0	606
21:00	0	290	65	0	0	0	0	1	0	0	0	0	0	356
22:00	0	147	25	0	1	0	0	0	0	0	1	0	0	174
23:00	0	82	17	0	0	0	0	0	0	0	0	0	0	99
Day Total	11	15686	4453	19	190	54	3	77	66	3	82	27	30	20701
Percent	0.1\%	75.8\%	21.5\%	0.1\%	0.9\%	0.3\%	0.0\%	0.4\%	0.3\%	0.0\%	0.4\%	0.1\%	0.1\%	
AM Peak	09:00	07:00	07:00	07:00	08:00	08:00	07:00	09:00	07:00		07:00	07:00	07:00	07:00
Vol.	2	1393	374	3	20	5	1	10	10		7	5	5	1821
PM Peak	16:00	17:00	17:00	13:00	12:00	17:00		12:00	14:00	12:00	16:00	15:00	14:00	17:00
Vol.	2	1402	369	4	27	10		5	9	1	16	5	5	1804

Field Data Services of Arizona, Inc.

Glassford Hill Rd. btwn. SR-89A \& Granville Pkwy.

Northbound, Southbound												Granville Pkwy. Latitude: 0' 0.000 Undefined		
Start		Cars \&	2 Axle		2 Axle	3 Axle	4 Axle	<5 Axle	5 Axle	>6 Axle	<6 Axle	6 Axle	>6 Axle	
Time	Bikes	Tlis	Long	Buses	6 Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Total
2/20/14	0	41	17	0	0	0	0	2	0	0	0	0	0	60
01:00	0	67	8	1	0	0	0	2	0	0	1	0	1	80
02:00	0	49	10	0	0	1	1	0	0	0	0	0	0	61
03:00	0	78	18	0	1	0	0	1	0	0	0	0	0	98
04:00	0	144	52	1	2	1	0	0	1	0	0	1	0	202
05:00	0	307	108	1	5	1	0	0	0	0	0	1	1	424
06:00	0	689	239	0	16	2	1	6	4	0	3	0	0	960
07:00	0	1400	395	3	16	5	0	3	3	0	6	3	1	1835
08:00	1	966	337	1	16	2	0	6	1	0	6	1	2	1339
09:00	0	748	248	0	16	3	1	8	2	1	1	1	0	1029
10:00	2	750	243	2	13	0	0	4	1	0	3	1	3	1022
11:00	2	850	267	1	9	2	0	2	2	0	5	0	2	1142
12 PM	0	929	253	1	6	1	0	1	5	2	6	0	1	1205
13:00	1	1065	244	3	23	7	1	5	5	1	2	0	2	1359
14:00	2	1113	261	3	13	8	1	2	4	0	2	1	1	1411
15:00	0	1206	368	0	7	6	0	5	3	1	4	1	1	1602
16:00	1	1266	343	1	5	4	0	5	4	0	6	4	5	1644
17:00	1	1204	338	0	13	3	0	0	3	0	4	0	0	1566
18:00	1	783	182	1	8	2	0	0	0	0	2	0	1	980
19:00	0	514	119	0	0	1	0	1	3	0	2	0	0	640
20:00	0	426	90	1	2	0	0	0	0	0	0	0	0	519
21:00	0	292	73	0	0	0	0	1	0	0	0	0	0	366
22:00	0	142	29	0	1	0	0	1	0	0	1	0	0	174
23:00	0	98	18	0	1	0	0	0	0	0	0	0	0	117
Day Total	11	15127	4260	20	173	49	5	55	41	5	54	14	21	19835
Percent	0.1\%	76.3\%	21.5\%	0.1\%	0.9\%	0.2\%	0.0\%	0.3\%	0.2\%	0.0\%	0.3\%	0.1\%	0.1\%	
AM Peak	10:00	07:00	07:00	07:00	06:00	07:00	02:00	09:00	06:00	09:00	07:00	07:00	10:00	07:00
Vol.	2	1400	395	3	16	5	1	8	4	1	6	3	3	1835
PM Peak	14:00	16:00	15:00	13:00	13:00	14:00	13:00	13:00	12:00	12:00	12:00	16:00	16:00	16:00
Vol.	2	1266	368	3	23	8	1	5	5	2	6	4	5	1644
Grand Total	32	46523	13312	57	605	156	11	206	195	8	213	59	91	61468
Percent	0.1\%	75.7\%	21.7\%	0.1\%	1.0\%	0.3\%	0.0\%	0.3\%	0.3\%	0.0\%	0.3\%	0.1\%	0.1\%	

Intersection Turning Movement
Prepared by:

N-S STREET:	SR-89	DATE: 08/26/14	LOCATION: Prescott
E-W STREET: SR-89A WB Ramps	DAY: TUESDAY	PROJECT\#	14-1253-001

	NORTHBOUND			SOUTHBOUND			EASTBOUND			WESTBOUND			TOTAL
LANES:	NL 1	NT 2	NR 0	SL 0	$\begin{aligned} & \text { ST } \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { SR } \\ & 0.5 \end{aligned}$	EL 0	$\begin{gathered} \text { ET } \\ 0 \end{gathered}$	ER 0	$\begin{aligned} & \text { WL } \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { WT } \\ & 1.5 \end{aligned}$	WR 1	
6:00 AM	1	19	0	0	112	0	0	0	0	28	2	40	202
6:15 AM	1	29	0	0	141	3	0	0	0	35	4	24	237
6:30 AM	2	41	0	0	178	1	0	0	0	76	11	59	368
6:45 AM	2	25	0	0	170	4	0	0	0	69	16	65	351
7:00 AM	3	33	0	0	197	2	0	0	0	101	14	66	416
7:15 AM	7	35	0	0	250	4	0	0	0	120	12	81	509
7:30 AM	5	37	0	0	220	6	0	0	0	188	17	122	595
7:45 AM	4	38	0	0	201	2	0	0	0	117	7	97	466
8:00 AM	4	19	0	0	210	4	0	0	0	86	9	69	401
8:15 AM	7	38	0	0	163	3	0	0	0	77	9	68	365
8:30 AM	6	40	0	0	172	4	0	0	0	78	10	66	376
8:45 AM	4	46	0	0	116	3	0	0	0	86	11	61	327
9:00 AM													
9:15 AM													
9:30 AM													
9:45 AM													
10:00 AM													
10:15 AM													
10:30 AM													
10:45 AM													
11:00 AM													
11:15 AM													
11:30 AM													
11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	46	400	0	0	2130	36	0	0	0	1061	122	818	4613
Approach \%	10.31	89.69	0.00	0.00	98.34	1.66	\#\#\#\#	\#\#\#\#	\#\#\#\#	53.02	6.10	40.88	
App/Depart	446	/	1218	2166	/	3191	0	/	0	2001	/	204	

AM Peak Hr Begins at: 700 AM
PEAK

Volumes	19	143	0	0	868	14	0	0	0	526	50	366
Approach \%	11.73	88.27	0.00	0.00	98.41	1.59	$\# \# \# \#$	$\# \# \# \#$	$\# \# \# \#$	55.84	5.31	38.85

PEAK HR.

CONTROL: Signal

COMMENT 1:
GPS: 34.632736,-112.429197

I ntersection Turning Movement

Field Data Services of Arizona, Inc.
520.316.6745

N-S STREET:	SR-89	DATE: 08/26/14	LOCATION: Prescott	
E-W STREET:	SR-89A WB Ramps	DAY: TUESDAY	PROJECT\# 14-1253-001	
	NORTHBOUND	SOUTHBOUND	EASTBOUND	WESTBOUND

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL

1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM	6	78	0	0	138	2	0	0	0	73	26	101	424
3:15 PM	8	84	0	0	141	2	0	0	0	65	25	87	412
3:30 PM	9	84	0	0	115	1	0	0	0	71	21	107	408
3:45 PM	11	63	0	0	98	1	0	0	0	52	25	80	330
4:00 PM	10	79	0	0	105	0	0	0	0	63	15	88	360
4:15 PM	6	70	0	0	93	3	0	0	0	58	21	76	327
4:30 PM	6	77	0	0	143	1	0	0	0	51	20	105	403
4:45 PM	6	71	0	0	107	0	0	0	0	57	11	132	384
5:00 PM	6	110	0	0	115	1	0	0	0	72	28	109	441
5:15 PM	5	107	0	0	90	1	0	0	0	44	13	87	347
5:30 PM	12	79	0	0	95	2	0	0	0	64	15	85	352
5:45 PM	4	58	0	0	86	1	0	0	0	34	9	81	273
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	89	960	0	0	1326	15	0	0	0	704	229	1138	4461
Approach \%	8.48	91.52	0.00	0.00	98.88	1.12	\#\#\#\#	\#\#\#\#	\#\#\#\#	33.99	11.06	54.95	
App/Depart	1049	1	2098	1341	1	2030	0	1	0	2071	1	333	

PM Peak Hr Begins at: 430 PM
PEAK

Volumes	23	365	0	0	455	3	0	0	0	224	72	433	1575
Approach \%	5.93	94.07	0.00	0.00	99.34	0.66	\#\#\#\# \#\#\#\# \#\#\#\#	30.73	9.88	59.40			

PEAK HR.
FACTOR
0.836
0.795
0.000
0.872
0.893

CONTROL: Signal
COMMENT 1: 0
GPS:
34.632736, -112.429197

Pedestrian \& Bicycle Study

N-S STREET: SR-89
E-W STREET: SR-89A WB Ramps

Date: 08/26/14
Day: TUESDAY

City: Prescott
Project \#: 14-1253-001

	PEDESTRIANS			
	N-LEG	S-LEG	E-LEG	W-LEG
6:00 AM	0	0	0	0
$6: 15 \mathrm{AM}$	0	0	0	0
6:30 AM	0	0	0	1
6:45 AM	0	0	0	0
7:00 AM	0	0	0	0
7:15 AM	0	0	0	0
7:30 AM	0	0	0	0
7:45 AM	0	0	0	0
8:00 AM	0	0	0	0
8:15 AM	0	0	0	0
8:30 AM	0	0	0	0
8:45 AM	0	0	0	0
TOTAL	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

	BICYCLES			
	N-LEG	S-LEG	E-LEG	W-LEG
6:00 AM	0	0	0	0
6:30 AM	0	0	0	0
6:45 AM	0	0	0	0
7:00 AM	0	0	0	0
7:15 AM	0	0	0	0
7:30 AM	0	0	0	0
7:45 AM	0	0	0	0
8:00 AM	0	0	0	0
8:15 AM	0	0	0	0
8:30 AM	0	0	0	0
8:45 AM	0	0	0	0
TOTAL	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

	BICYCLES			
3:00 PM	N-LEG	S-LEG	E-LEG	W-LEG
3:15 PM	0	0	0	0
3:30 PM	0	0	0	0
3:45 PM	0	0	0	0
4:00 PM	0	0	0	0
4:15 PM	0	0	0	0
4:30 PM	0	0	0	0
4:45 PM	0	0	0	0
5:00 PM	0	0	0	0
5:15 PM	0	0	0	0
5:30 PM	0	0	0	0
5:45 PM	0	0	0	0
TOTAL	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

North Leg

West Leg
East Leg

South Leg

Project \#: 14-1253-002

TMC SUMMARY OF SR-89 \& SR-89A EB Ramps

Intersection Turning Movement
Prepared by:

N-S STREET:	SR-89	DATE: 08/26/14	LOCATION: Prescott
E-W STREET: SR-89A EB Ramps	DAY: TUESDAY	PROJECT\# 14-1253-002	

	NORTHBOUND			SOUTHBOUND			EASTBOUND			WESTBOUND			TOTAL
LANES:	NL	NT 2	NR 1	$\begin{gathered} \mathrm{SL} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{ST} \\ 2 \end{gathered}$	SR 1	EL 0.5	ET 1	ER 0.5	$\begin{gathered} W L \\ 0 \end{gathered}$	$\begin{gathered} \text { WT } \\ 0 \end{gathered}$	$\begin{gathered} \text { WR } \\ 0 \end{gathered}$	
6:00 AM	0	16	14	73	73	0	2	9	4	0	0	0	191
6:15 AM	0	26	28	82	91	0	4	30	5	0	0	0	266
6:30 AM	0	38	48	102	155	0	4	22	7	0	0	0	376
6:45 AM	0	26	32	108	138	0	5	26	8	0	0	0	343
7:00 AM	0	31	47	97	202	0	5	9	16	0	0	0	407
7:15 AM	0	39	60	138	247	0	8	20	8	0	0	0	520
7:30 AM	0	40	55	101	300	0	3	25	11	0	0	0	535
7:45 AM	0	37	55	110	201	0	2	32	14	0	0	0	451
8:00 AM	0	27	58	116	192	0	2	18	15	0	0	0	428
8:15 AM	0	41	51	81	145	0	1	17	11	0	0	0	347
8:30 AM	0	42	57	75	168	0	4	19	13	0	0	0	378
8:45 AM	0	44	35	54	146	0	4	16	11	0	0	0	310
9:00 AM													
9:15 AM													
9:30 AM													
9:45 AM													
10:00 AM													
10:15 AM													
10:30 AM													
10:45 AM													
11:00 AM													
11:15 AM													
11:30 AM													
11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	407	540	1137	2058	0	44	243	123	$\begin{array}{ccc} 0 & 0 & 0 \\ \text { \#\#\#\# } & \text { \#\#\# } & \text { \#\#\# } \end{array}$			4552
Approach \%	0.00	42.98	57.02	35.59	64.41	0.00	10.73	59.27	30.00				
App/Depart	947	/	451	3195	/	2181	410	/	1920	0	/	0	

AM Peak Hr Begins at: 715 AM
PEAK

Volumes	0	143	228	465	940	0	15	95	48	0	0	0
Approach \%	0.00	38.54	61.46	33.10	66.90	0.00	9.49	60.13	30.38	\#\#\#\# \#\#\#\# \#\#\#\#		1934

0.937
$0.876 \quad \mid \quad 0.823$
0.000
0.904

CONTROL: Signal

COMMENT 1:
GPS: 34.631752,-112.428918

I ntersection Turning Movement

Field Data Services of Arizona, Inc.
520.316.6745

N-S STREET:	SR-89	DATE: 08/26/14	LOCATION: Prescott	
E-W STREET:	SR-89A EB Ramps	DAY: TUESDAY	PROJECT\#	14-1253-002
	NORTHBOUND	SOUTHBOUND	EASTBOUND	WESTBOUND

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL

1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM	0	105	72	96	120	0	4	16	7	0	0	0	420
3:15 PM	0	82	71	84	129	0	3	15	8	0	0	0	392
3:30 PM	0	105	88	68	138	0	2	9	5	0	0	0	415
3:45 PM	0	84	79	66	77	0	1	10	11	0	0	0	328
4:00 PM	0	74	65	57	106	0	3	10	5	0	0	0	320
4:15 PM	0	70	66	49	101	0	0	6	12	0	0	0	304
4:30 PM	0	89	89	78	108	0	3	21	10	0	0	0	398
4:45 PM	0	81	79	66	103	0	1	4	8	0	0	0	342
5:00 PM	0	115	119	64	112	0	4	2	5	0	0	0	421
5:15 PM	0	104	101	58	89	0	4	5	3	0	0	0	364
5:30 PM	0	90	71	50	92	0	0	8	4	0	0	0	315
5:45 PM	0	59	48	62	51	0	1	9	6	0	0	0	236
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	0	1058	948	798	1226	0	26	115	84	0	0	0	4255
Approach \%	0.00	52.74	47.26	39.43	60.57	0.00	11.56	51.11	37.33	\#\#\#\#	\#\#\#\#	\#\#\#\#	
App/Depart	2006	1	1084	2024	1	1310	225	1	1861	0	1	0	

PM Peak Hr Begins at: 300 PM
PEAK

Volumes	0	376	310	314	464	0	10	50	31	0	0	0	1555
Approach \%	0.00	54.81	45.19	40.36	59.64	0.00	10.99	54.95	34.07	$\# \# \# \# \# \# \# \# \# \# \# ~$			

CONTROL: Signal
COMMENT 1: 0
GPS:
34.631752, -112.428918

Project \#: _14-1253-003

TMC SUMMARY OF SR-69 \& SR-169

N-S STREET:	SR-69	DATE: $08 / 26 / 14$	LOCATION: Dewey
E-W STREET:	SR-169	DAY: TUESDAY	PROJECT\#
14-1253-003			

LANES:	NORTHBOUND			SOUTHBOUND			EASTBOUND			WESTBOUND			TOTAL
	NL 1	$\begin{gathered} \text { NT } \\ 2 \end{gathered}$	NR 1	SL 1	$\begin{gathered} \text { ST } \\ \hline \end{gathered}$	SR 1	EL 1	ET 1	$\begin{gathered} \text { ER } \\ 0 \end{gathered}$	$\begin{gathered} \text { WL } \\ 1 \end{gathered}$	$\begin{gathered} \text { WT } \\ 1 \end{gathered}$	$\begin{gathered} \text { WR } \\ 0 \end{gathered}$	
6:00 AM	0	67	5	36	45	1	2	0	0	4		37	198
6:15 AM	0	84	4	44	63	2	5	1	1	6	1	55	266
6:30 AM	0	101	1	50	77	1	2	2	0	8	0	62	304
6:45 AM	0	97	13	64	83	3	1	0	0	4	0	66	331
7:00 AM	0	140	7	48	92	4	1	0	0	5	1	110	408
7:15 AM	1	144	5	73	103	3	4	0	1	10	0	95	439
7:30 AM	1	150	5	70	97	3	7	1	1	17	2	125	479
7:45 AM	0	145	9	82	126	2	0	1	1	22	1	83	472
8:00 AM	3	166	17	65	111	3	3	0	2	9	0	78	457
8:15 AM	1	118	11	79	128	1	0	1	1	7	1	84	432
8:30 AM	0	146	5	59	130	3	5	1	2	10	0	86	447
8:45 AM	0	141	9	71	108	3	2	1	0	7	2	79	423
9:00 AM													
9:15 AM													
$9: 30 \mathrm{AM}$													
9:45 AM													
10:00 AM													
10:15 AM													
10:30 AM													
10:45 AM													
11:00 AM													
11:15 AM													
11:30 AM													
11:45 AM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	6	1499	91	741	1163	29	32	8	9	109	9	960	4656
Approach \%	0.38	93.92	5.70	38.33	60.17	1.50	65.31	16.33	18.37	10.11	0.83	89.05	
		1596	1	2491	1933	1	1281	49	1	840	1078	1	44

AM Peak Hr Begins at: 715 AM

PEAK

Volumes	5	605	36	290	437	11	14	2	5	58	3	381	1847
Approach \%	0.77	93.65	5.57	39.30	59.21	1.49	66.67	9.52	23.81	13.12	0.68	86.20	

I ntersection Turning Movement

Field Data Services of Arizona, Inc.
 520.316.6745
 Vveracitytrafficgroup

N-S STREET:	SR-69	DATE: 08/26/14	LOCATION: Dewey	
E-W STREET:	SR-169	DAY: TUESDAY	PROJECT\# 14-1253-003	
	NORTHBOUND	SOUTHBOUND	EASTBOUND	WESTBOUND

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	2	1	1	2	1	1	1	0	1	1	0	

1:00 PM													
1:15 PM													
1:30 PM													
1:45 PM													
2:00 PM													
2:15 PM													
2:30 PM													
2:45 PM													
3:00 PM	0	124	6	92	136	1	2	0	2	5	0	78	446
3:15 PM	2	136	12	87	160	2	4	1	0	7	0	103	514
3:30 PM	3	143	5	90	154	3	5	1	3	10	0	68	485
3:45 PM	1	105	6	82	169	2	7	0	2	4	1	69	448
4:00 PM	0	130	6	84	155	3	4	2	1	7	1	77	470
4:15 PM	1	131	5	98	154	1	2	1	0	9	1	94	497
4:30 PM	2	144	9	97	163	1	3	0	1	6	0	73	499
4:45 PM	1	144	6	72	152	5	5	0	1	4	0	74	464
5:00 PM	1	114	1	83	137	2	7	2	1	5	0	97	450
5:15 PM	0	98	6	110	129	1	7	2	1	3	0	82	439
5:30 PM	0	111	7	76	129	0	9	1	0	5	1	79	418
5:45 PM	0	85	3	101	116	2	5	1	0	8	1	70	392
6:00 PM													
6:15 PM													
6:30 PM													
6:45 PM													

TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
Volumes	11	1465	72	1072	1754	23	60	11	12	73	5	964	5522
Approach \%	0.71	94.64	4.65	37.63	61.57	0.81	72.29	13.25	14.46	7.01	0.48	92.51	
App/Depart	1548	1	2489	2849	1	1839	83	1	1155	1042	1	39	

PM Peak Hr Begins at: 400 PM
PEAK

Volumes	4	549	26	351	624	10	14	3	3	26	2	318	1930
Approach \%	0.69	94.82	4.49	35.63	63.35	1.02	70.00	15.00	15.00	7.51	0.58	91.91	

PEAK HR.
FACTOR:
0.934
0.943
0.714
0.832
0.967

CONTROL: Signal
COMMENT 1: 0
GPS:
34.529816, -112.242124

[^0]:
 A T I B E S B U I L D I N G S U I T E E

[^1]: (vpd) vehicles per day

[^2]: ${ }^{1}$ VMT/VHT do not include centroid connectors

